首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于人工蜂群(ABC)算法与粒子群优化(PSO)算法,提出了一种新的配对混合人工蜂群(PHABC)策略,用于求解含约束条件的配对组合测试中测试用例集的生成问题.实验结果表明,即使在带有参数约束的情况下,PHABC输出的最佳组合测试集结果正确性更高,相较于其他现有的策略,性能更优.  相似文献   

2.
基于粒子群和人工蜂群算法的混合优化算法   总被引:1,自引:0,他引:1  
王志刚 《科学技术与工程》2012,12(20):4921-4925,4934
提出一种基于粒子群(PSO)和人工蜂群算法(ABC)相结合的新型混合优化算法—PSOABC。该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由人工蜂群算法进化而来,并且在人工蜂群算法中按轮盘赌的方式选择个体进化所需的随机个体。此外,算法采用一种信息分享机制,使两个种群中的个体可以实现协同进化。对4个基准函数进行仿真实验并与ABC进行比较,表明本文提出的算法能有效地改善寻优性能,增强摆脱局部极值的能力。  相似文献   

3.
在介绍多小波理论的基础上,提出一种基于多小波的自适应图像去噪算法,该方法根据多小波系数在不同子带、不同方向上的特性自适应选取不同的最佳阈值,然后再与图像的分解尺度函数因子结合起来。实验表明,与单小波和其它使用不同预处理过程的传统多小波去噪方法相比,该方法有效地去除了白噪声,进一步提高了图像的峰值信噪比(PSNR)和最小均方误差(MSE)。  相似文献   

4.
陶涛  毛伊敏 《科学技术与工程》2021,21(21):8989-8998
针对大数据背景下基于划分的聚类算法中存在参数寻优能力不佳、初始中心敏感、数据倾斜等问题,提出一种基于MapReduce和人工蜂群(artificial bee colony,ABC)算法的并行划分聚类(the partitioning-based clustering algorithm by using im-prove artificial bee colony based on MapReduce,MR-PBIABC)算法.首先,提出基于反向学习和聚类准则函数的初始化策略(backward learning and the clustering criterion function,BLCCF),提升人工蜂群算法搜索的解质量,并将ABC算法和人工鱼群(artificial fish colony,AFS)算法结合,提出改进人工蜂群(improve artificial bee colony,IABC)算法,通过利用AFS算法最优解能力较强的特性,来提高ABC算法的寻优能力;其次,根据改进的人工蜂群算法IABC获取初始聚类中心,提出相对熵策略(rela-tive entropy strategy,RES)衡量人工鱼间的距离,保证获得的初始聚类中心是最优人工鱼状态,从而有效避免了随机选取初始聚类中心,引起的初始中心敏感的问题;再次,设计数据均衡策略(data balancing strategy,DBS),通过动态收集节点负载并分配节点间的负载,解决了节点上数据倾斜的问题;最后,结合MapReduce计算模型,并行挖掘簇中心,生成最终聚类结果.实验结果表明,MR-PBIABC算法的聚类效果更佳,同时在大数据环境下,能有效地提高并行计算的效率.  相似文献   

5.
为了提高城市道路短时交通流量的预测精度,克服小波神经网络预测过程中存在收敛速度较慢、容易陷入局部最优的缺点,提出改进的人工蜂群算法优化小波神经网络预测模型。该算法引入差分进化算法中的自适应变异操作和遗传算法中的选择算子、交叉算子与变异算子来优化传统的人工蜂群算法,改善人工蜂群算法后期收敛速度慢、局部搜索能力弱的缺点。本文使用该算法优化小波神经网络的参数并对短时交通流进行预测,模型的仿真结果表明,改进人工蜂群算法优化小波神经网络预测的结果误差更小,精确度更高,训练次数少,具有较高的实际应用价值。  相似文献   

6.
7.
文章建立了有限元模型计算复合材料修复的含中心裂纹钢板的裂纹处应力强度因子(stress intensity factor,SIF),把仿真结果作为训练样本;提出通过支持向量机(support vector machine,SVM)对样本集进行训练和预测,建立基于复合材料补片尺寸参数的胶接强度预测模型,综合考虑补片的长度...  相似文献   

8.
提出在气动人工肌肉驱动的关节系统中,存在一个最优关节设计,包括关节半径、肌肉附着点最优位置等,使得对同一系统输出转矩达到最优.通过分析气动人工肌肉静态特性模型,推导出关节静特性模型.改变气动人工肌肉的状态参数进行仿真,得到关节半径变化、肌肉附着点变化与关节输出转矩、收缩量之间的关系,并利用PSO计算出最优关节半径与肌肉附着点最优位置.此分析方法与结果对气动肌肉驱动的仿生手臂的结构设计起到有效的指导作用.  相似文献   

9.
杨昕昳 《科技资讯》2011,(11):85-85
本文提出了一种基于PSO优化的非局部平均去噪算法,该算法以Non-Local means算法处理图片,以滤波参数h作为PSO的粒子,以PSNR的函数模型作为PSO中的目标函数,以群智能算法优化去噪效果.通过仿真,该算法比传统算法有更好的视觉效果和更快的速度,达到了算法的最佳性能.  相似文献   

10.
图像去噪通常采用的是低通滤波的方法,但是它在消除图像噪声的同时,也会消除图像中部分有用的高频信息。各种图像去噪方法性能的优劣,其实质就是在去噪和保留有用高频信息之间进行权衡。论文概括描述了小波理论及其优缺点,着重介绍了阈值收缩法并分析了其存在的不足,分析了阈值函数选取方法,并采用MATLAB进行仿真实验,实验结果表明,使用软阚值函数进行图像降噪,较之硬阈值,通常可获得更好的效果。  相似文献   

11.
基于人工蜂群的模糊聚类算法   总被引:2,自引:0,他引:2  
针对模糊C-均值(FCM)聚类算法存在容易陷入局部极小值、对初始值和噪声数据敏感的缺点,提出一种基于人工蜂群(ABC)的模糊聚类算法(ABFM).该算法引入全局寻优能力强的人工蜂群算法来求得最优解作为FCM算法的初始聚类中心,然后利用FCM算法优化初始聚类中心,最后求得全局最优解,从而有效克服了FCM算法的缺点.实验结果表明,新算法与FCM聚类算法相比,提高了算法的寻优能力,并且迭代次数更少,收敛速度更快,聚类效果更好.  相似文献   

12.
人工蜂群算法中蜜蜂在开采蜜源时,随机选择维度,随意决定开采方向和步伐来搜索新蜜源,没有利用以往的搜索经验,导致其收敛速度过慢.对此提出了基于行动轨迹的人工蜂群算法,记录跟随蜜蜂开采蜜源的行动轨迹,并以此为经验引导下一次开采,以提高人工蜂群算法的开采能力.通过对优化函数寻优测试,实验结果表明该算法不仅加快收敛速度,提高寻优能力,还具有良好的鲁棒性和稳定性.  相似文献   

13.
针对人工蜂群算法存在后期收敛速度慢、局部搜索能力差和易陷入局部最优的问题,提出一种基于交叉算子的改进人工蜂群算法.该算法利用佳点集方法产生初始种群,使得初始化个体尽可能均匀地分布在搜索空间;随机选择食物源位置与当前最优食物源位置进行算术交叉操作,引导群体向全局最优解靠近,提高算法的局部搜索能力和加快收敛速度.通过5个高维标准测试函数的实验结果表明新算法的有效性.  相似文献   

14.
空间资源调度问题在满足时间和空间资源约束的前提下,追求项目工期最短以及空间资源利用的最大化,针对该问题对空间资源进行抽象,建立数学模型,在配置空间理论基础上,提出基于人工蜂群的时空资源受限项目调度算法。对不同规模的问题实例采用不同的算法进行对比,结果表明本文算法在相对较短时间内可以获得较优的调度方案。  相似文献   

15.
针对经典人工蜂群算法收敛速率较慢,后期易陷入局部最优解的不足,本文将粒子群算法中"全局最优"的思想引入到人工蜂群算法的改进过程,从而形成了一种新的人工蜂群改进算法——粒子蜂群算法.首先,提出了趋优度的概念,用来衡量引领蜂在有限次迭代过程中向全局最优解靠近或远离的程度,趋优度值可以评价个体的"发展潜力",趋优度值越低的个体,越需要增大变异的程度,以便找到质量更优的解.其次,专门设计了一种新的蜜蜂群体——粒子蜂,在引领蜂变异阶段根据趋优度的大小将引领蜂变异为侦查蜂和粒子蜂,粒子蜂的出现在很大程度上增加了种群的多样性,拓展了算法的搜索范围.然后,通过粒子蜂群算法种群序列是一个有限齐次马尔科夫链和种群进化单调性的分析,验证了本文所提算法的种群序列依概率1收敛于全局最优解集.最后,将本文所提算法应用于多个常见测试函数,并与经典蜂群算法、近年其他文献改进蜂群算法进行了仿真对比研究,仿真结果表明本文所提算法确实加大了种群的分散度、扩宽了搜索范围,从而具有更快的收敛速度和更高的寻优精度  相似文献   

16.
针对共形阵列中主瓣约束下的波束形成问题,文章提出了一种基于改进人工蜂群算法(Improved Artificial Bee Colony algorithm,IABC)的低副瓣方向图综合算法。算法首先将共形阵列的波束形成问题归纳为一个与目标方向图距离最小化的优化问题。通过引入多维邻域搜索策略,改善人工蜂群算法的局部搜索效率,同时通过增加罚函数来抑制副瓣电平,对权值矢量空间进行搜索,寻求最优权值矢量,最终得到与期望逼近的阵列方向图。实验结果表明该算法能够很好地逼近期望方向图,收敛速度快,为实现共形阵列下的波束形成提供了有价值的参考。  相似文献   

17.
参数的选择直接影响着最小二乘支持向量机(LSSVM)的泛化性能和回归效验,是确保LSSVM优秀性能的关键.为了解决以上问题,对人工蜂群算法(ABC)进行了改进,引入新解越界处理方法,研究了一种基于双种群策略的蜂群算法,同时提出提出一种运行时参数调整方法,然后验证优化后的算法IIABC的准确性与健壮性.燃气回归分析采用平均绝对百分比误差(MAPE)作为IIABC算法基准方法,实验结果表明基于IIABC-LSSVM预测结果比IABC-LSSVM有着更高的准确性.  相似文献   

18.
为实现认知无线电系统参数的自适应调整功能,提出了一种基于二进制人工蜂群算法的认知无线电决策引擎。将认知无线电决策问题转化为多目标函数优化问题,并采用加权和方法将复杂的多目标函数优化问题归一化为简单的单目标函数优化问题。采用二进制人工蜂群算法对此优化问题进行求解,实现对无线电系统参数的优化调整。最后,通过一种多载波系统对算法性能进行仿真分析,仿真结果验证了该算法的有效性和实用性。  相似文献   

19.
针对传统盲源分离算法收敛速度与分离性能间的矛盾,提出一种基于改进人工蜂群算法的盲源分离算法.该算法利用信号的峰度绝对值作为被优化目标函数,对人工蜂群算法中跟随蜂阶段的搜索过程进行改进,使人工蜂群算法在初始阶段可以快速收敛到最优解所在区域,具有更高的收敛精度.使用改进后的人工蜂群算法对传统盲源分离算法中的初始分离矩阵进行优化,再利用优化的初始分离矩阵进行信号分离.仿真结果表明,改进后的算法能够显著加快收敛速度并保持较好的分离性能值,较好地解决了收敛速度与分离性能间的矛盾.  相似文献   

20.
人工蜂群算法是用以解决复杂优化问题的新方法,具有收敛速度快、优化性能高等特点.将人工蜂群算法与粒子滤波相结合应用于信道估计可以摆脱常规方法对线性高斯条件的束缚,具有理论依据和现实意义.结合2种算法的优势提出了人工蜂群粒子滤波,采用人工蜂群算法确定粒子滤波的建议分布.仿真将Alpha稳定分布作为非高斯噪声模型,实现了粒子滤波及其改进算法的信道估计研究.结果表明人工蜂群算法与其他智能算法相比具有更快的收敛速度,改进人工蜂群粒子滤波与无迹粒子滤波相比极大地提高了信道估计精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号