首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
镝扩渗对烧结钕铁硼磁体组织结构与磁性能的影响   总被引:1,自引:0,他引:1  
对比研究了38UH、42SH和N50薄片状钕铁硼磁体晶界镝扩渗前后的组织结构与磁性能,发现经过镝扩渗处理后磁体的矫顽力提高了400kA·m-1以上,而剩磁几乎不变,最大磁能积因为矫顽力和方形度的提高而提高.经组织结构分析认为,钕铁硼磁体晶界镝扩渗提高矫顽力主要是通过提高Nd2Fe14B晶粒外延层的各向异性和形核场实现的.根据Fick第一扩散定律,对磁体晶界镝扩渗进行了模拟计算,可近似得到定温热处理不同时间后渗镝深度及对应的镝的质量浓度及质量分数.  相似文献   

3.
研究了铸片工艺SC(Strip Casting)制备的合金铸片的微结构对烧结钕铁硼磁体微结构与磁性能的影响。结果表明:冷却速度过高时铸片厚度变薄,同时在急冷面产生细小的等轴晶,使烧结磁体容易出现固固烧结现象和主相品粒的反常长大,降低了磁体的永磁性能;采用合适的冷却速度制备的铸片几乎全部由厚度3~5μm片状晶组成,且被富钕相薄层均匀隔开,采用该类铸片可以获得高永磁性能的烧结磁体,其永磁性能达到:Br=1.44T,jHc=877KA/m,(BH)max=398kJ/m^3(50MGOe)。  相似文献   

4.
郭毛毛 《科技资讯》2013,(24):77-78
本文围绕永磁材料全面而系统的分析烧结钕铁硼强磁特性.永磁材料是现代化生产大背景下的一种新型功能材料,烧结钕铁硼具有强磁特性,烧结钕铁硼磁体主要由剩磁Br、磁能积(BH)max、矫顽力Hci、居里温度TC构成磁性能参量.可通过增大剩磁Br和磁能积(BH)max,减小矫顽力Hci来增强烧结钕铁硼的强磁特性.  相似文献   

5.
采用急冷铸片(SC)、氢破碎(HD)和气流磨(JM)工艺制备烧结钕铁硼磁体的磁粉,研究了粉末流动性及添加润滑剂对磁体取向度和硬磁性能的影响.结果表明:影响松装状态磁粉流动性的主要因素是粉末颗粒的磁团聚,影响密实磁粉流动性的主要因素是粉末颗粒间的摩擦力.添加适量的润滑剂可以防止粉末颗粒团聚,明显地减小粉末摩擦力,改善流动性,提高磁体的取向度、剩磁与磁能积.采用添加润滑剂和脉冲磁场取向橡皮模等静压制成型工艺,批量生产的烧结钕铁硼磁体性能达到:Br=1.457T, jHc=1148kA·m-1,(BH)max=408kJ· m-3.  相似文献   

6.
正一、引言在稀土永磁电机应用中,由于钕铁硼永磁材料的居里温度较低,温度系数较高,因而在高温使用时磁损失较大。早期在小容量的PMSM设计中,转子温升问题并没有引起学者们足够的重视。实际上,定子齿槽效应、绕组磁动势的非正弦分布和绕组中的谐波电流所产生的谐波磁动势也会在转子永磁体、转子轭和绑扎永磁体的金属护套中引起涡流损耗。通常情况下,与定子的铜损和铁损相比,转子涡流损耗很小,所以很少有人研究转子涡流损耗对转子永磁体的影响。永磁体内是存在涡流的,并且随着电机功率的提高,永磁体的体积变大,加之转子散热差,该损耗会引起较高温升,在极  相似文献   

7.
研究了含钴NdFeB系列稀土永磁体的磁性能与显微组织,Co加入到三元NdFeB磁体中显著提高磁体的居里温度Tc,因而大大改善了可逆温度系数α(Br)。对实验数据的计算机拟合表明二者间符合指数函数关系,且在单体数坐标中表现为两阶段曲线,在多组元NdFeB合金系列中,Al是提高含Co磁体矫顽力最有效的元素,其次是Mo,而Nb和V则不能改善Co对矫顽力的有害影响,高Co磁体中,Al恶化α(Br)的作用已  相似文献   

8.
HDD法粘结NdFeB磁体的磁性能   总被引:1,自引:0,他引:1  
研究了NdFeB合金成分,均匀化处理和HDD处理脱氢过程对磁末及粘结磁体磁性能的影响,实验表明,HDD法制备的NdFeB粉末具有较好的温度稳定性和时间稳定性。  相似文献   

9.
采用放电等离子烧结技术,利用不同速率的快淬薄带制备出各向异性的热变形Nd-Fe-B磁体,运用振动样品磁强计和扫描电子显微镜对热变形磁体的磁性能和微观结构进行研究.结果表明:随着快淬薄带速率的增加,获得最佳磁性能的热变形温度也逐渐增加,三类热变形Nd-Fe-B磁体获得最佳磁性能的热变形温度分别为650,680和700°C;磁体最佳磁性能中的剩磁和最大磁能积随着快淬薄带速率的增加而降低,而内禀矫顽力却略有增加.磁体的晶粒尺寸随着热变形温度的增加而增大;相同热变形温度下,磁体的晶粒尺寸随快淬速率的增加而减小.  相似文献   

10.
该文根据作者在公司多年从事生产烧结钕铁硼产品实践的工作体会,具体讲述了烧结钕铁硼生产,用电脑服务器全程跟踪关键工艺的生产过程,从而达到提高烧结钕铁硼的产品质量、及工艺控制质量,降低生产成本,最终达到优化生产。  相似文献   

11.
研究了不同二次添加剂(CaCO3,Al2O3,SiO2)单独加入,不同毛坯密度及不同烧结温度等因素对同性磁粉(瓦)磁性能的影响,同时指出生产中应注意的问题。  相似文献   

12.
研究温度变化对快淬钕铁硼磁粉磁性能的影响。采用同一批次混合均匀的磁粉(1309A),在不同温度(10~30℃)下通过不同工艺制备出一定量磁体,通过检测得出磁性能,然后对这些数据进行研究以期得到温度与磁性能之间的关系。剩余磁感应强度(Br)与磁极化强度矫顽力(Hcj)在一定区间内与温度具有一定的线性关系,即相应的温度系数α、β值一定,但其绝对值受制样工艺的影响较大。  相似文献   

13.
钕铁硼永磁材料性能测试技术研究   总被引:2,自引:0,他引:2  
详细阐述了钕铁硼永磁材料的测量原理和特点,以及测量仪器的构成和软硬件设计要点。提出了采用模拟、数字混合积分信号处理,电子电位器零位校准和两级计算机控制结构的钕铁硼材料性能测量仪,并对制做的测量仪样机通过标准样品进行对比测试,达到了较高的测量精度,体现了高性能、低成本的特点。对于钕铁硼永磁材料生产行业具有实际应用和推广价值。  相似文献   

14.
热扩散法是制取部分合金化Cu-Sn粉末的途径之一,作者研究了扩散温度对Cu-Sn粉末压制与烧结性能的影响,实验结果表明,Cu-Sn粉末的压实性及烧结胀大现象,都随着扩散温度的提高而降低,Cu粉颗粒越粗,获得具有相同烧结性能的Cu-Sn粉末的扩散温度越高。  相似文献   

15.
通过溶胶-凝胶法用1 100℃低温烧结制得了(Y3-xCax)(Fe5-xZrx)O12纳米颗粒.利用谢乐公式计算得未掺杂YIG样品的平均粒径为88.6 nm,XRD结果表明掺杂样品均为YIG纯相.VSM表征发现当掺杂量x=0.3时,样品的Ms值最大,达到28.4 Am2·kg-1,继续增大掺杂量,由于超交换作用削弱导致磁性减弱;样品的Hc随掺杂量增大呈减小趋势.综合Ms值和Hc值,认为当x=0.3时,样品的磁性能最好,此时Ms=28.4 Am2·kg-1,Hc=1.69 k A·m-1.  相似文献   

16.
Sn对烧结钕铁硼合金磁性能的影响   总被引:2,自引:1,他引:1  
研究了Sn含量对烧结三元NdFeB合金、NdDyFeAlB合金磁性能的影响 .Sn采用辅合金引入 .研究发现Sn使三元NdFeB磁性能全面降低 ,且随含Sn量增加、下降幅度增大 .而对于NdDyFeAlB合金 ,在适当热处理情况下 ,添加Sn使合金的矫顽力得到提高 ,最佳含Sn量约为 0 .1 5 % (质量分数 ) .但是 ,不适当的热处理 ,使NdDyFeAlBSn合金的矫顽力反而比热处理前还低 .X射线衍射实验表明 ,矫顽力下降的合金中出现明显的α Fe衍射峰 .模型计算也说明 ,软磁性α Fe的析出是合金矫顽力下降的原因  相似文献   

17.
CO-Fe3O4磁性流体磁性能的研究   总被引:3,自引:0,他引:3  
制备了以超细 Co、Fe3O4微粒为基体材料的磁性液体。考察了磁微粒粒径、表面活性剂等因素对其磁性能的影响 ,用正交实验优化了制备工艺条件 ,对磁性液体的磁化强度进行了测试。结果表明 Co-Fe3O4磁性液体的磁性能主要由磁微粒粒径、磁微粒含量及活性剂量决定。  相似文献   

18.
利用固相烧结法将镍包铜粉成功地制成了块状烧结体,通过SEM、XRD和EDS研究了烧结过程中镍包铜粉中界面的迁移情况.结果表明,随烧结温度升高,颗粒内原子扩散系数越大,烧结体界面迁移越容易,形成较大的晶粒,同时界面组织也比较均匀.在扩散过程中,由于镍的扩散系数比铜大,镍层扩散进入铜形成了铜镍固溶体,界面呈现单向迁移.  相似文献   

19.
二茂铁有机磁体的磁性能与应用研究   总被引:4,自引:5,他引:4  
与无机铁氧体比较,以二茂铁为原料,按专利文献合成的二茂铁有机磁体在广泛的温度范围内磁性能十分稳定,在10~1800MHz的高频、微波下,磁导率(μ')和磁损耗(μ〃)基本不随使用频率而变化.应用研究表明,它是一类新型的软磁材料,适于制作许多高频和微波电子器件.  相似文献   

20.
采用射频磁控溅射法在玻璃基片上制备了Nd(Tb,Dy)Co/Cr薄膜.X射线衍射仪分析结果表明溅射制得的Nd(Tb,Dy)Co薄膜为非晶结构.振动样品磁强计(VSM)测试结果显示NdTbCo薄膜垂直膜面方向矫顽力与剩磁矩形比分别达到308.8kA/m和0.732,而平行膜面方向矫顽力与剩磁矩形比分别仅为22.3kA/m和0.173,这表明NdTbCo薄膜具有垂直磁各向异性.随着Nd掺杂量的增加,Nd(Tb,Dy)Co薄膜的矫顽力逐渐降低,克尔旋转角与反射率则逐渐升高.(NdxTb1-x)31Co69的克尔旋转角和反射率分别从x=0的0.2720°,0.2616,上升到x=0.338的0.3258°,0.3320.(NdxDy1-x)33Co67的克尔旋转角和反射率分别从x=0.210的0.2761°,0.3054,上升到了x=0.321的0.3231°,0.3974.Nd掺杂量对克尔旋转角的影响可用Nd(Tb,Dy)Co的亚铁磁结构进行解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号