首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了方便分析GNSS验证系统授时指标,设计并实现了授时指标软件。该软件具有数据解析、授时载波频率准确性分析、载波频率稳定性分析、码载一致性分析、数据拟合、频域分析等功能。采用MVC(model-view-controller)模式对软件的系统架构进行设计,描述了Qt的信号与槽机制和核心模块的设计及其交互,并用C++语言在Qt平台完成了软件的开发。实验表明,该软件可方便地实现GNSS验证系统授时指标的定量分析,GNSS验证系统频率准确度为10~(-10)、码载一致性为10~(-10)。  相似文献   

2.
李雪梅  黄丽 《科技信息》2012,(35):127-128
采用直接数字频率合成技术子设计了一种电力载波测试信号源。该信号源采用GY7G68013单片机控制AD9850DDS芯片产生频率可调的电力载波测试信号,其频率范围为100—600kHz宽、频率分辨率为0.1Hz,输出信号频率误差优于10—4,输出幅度误差优于10-1,且频率转换时间短,使用方便。  相似文献   

3.
针对高频信号源直接数字频率合成存在较多杂散信号和较窄输出频带等问题,提出了一种频率和相位可编程的智能信号发生器设计方法。该系统的波形发生器采用DDS芯片AD9833,通过单片机编程控制,可实现正弦波、三角波和方波等多种波形输出。输出频率相对误差数量级为10-5时,正弦波最高频率为10 MHz,最低频率为10 Hz;方波和三角波最高频率为5 MHz,最低频率为100 Hz。仿真结果表明,该系统具有杂散信号小、输出频带宽、精度高、切换速度快等特点。  相似文献   

4.
文章针对通信接收机小型化的要求提出了一种接收机频率源的设计思路,采用TSMC 0.18μm 1P6M混合信号工艺设计锁相环(phase locked loop,PLL)电路结构,设计了一种具有快速锁定时间、较宽频率调谐范围、低相位噪声的电荷泵锁相环(charge pump phase locked loop,CPPLL)。使用Cadence Spectre对电路进行仿真,电路整体具有在输入参考频率23~600 MHz之间产生1.92~2.62 GHz的时钟信号功能。在中心频率2.3 GHz、偏移载波频率10 MHz的情况下,敏感单元环形压控振荡器的相位噪声为-112.9 dBc/Hz。进行版图设计后,对电路进行验证,设计出小型化频率合成器芯片。  相似文献   

5.
设计的正弦信号发生器参加了2005年全国大学生电子设计大赛,获得吉林省级设计三等奖。该正弦信号发生器是通过凌阳公司生产的SPCE061A单片机对MAX038芯片的控制来实现的。正弦波输出频率范围为1kHz~10MHz;具有频率设置功能,且频率步进为100Hz;输出信号频率稳定度优于10-4;输出电压幅度在50Ω负载电阻上的电压峰-峰值Vopp≥1V;用示波器观察时无明显失真。  相似文献   

6.
介绍了一种C波段频率源的设计和实现方法.采用数字锁相环技术实现了C波段锁相频率合成器,其输出频率为6.4 GHz,功率大于10 dBm,相位噪声优于-74.1 dBc/Hz@1kHz.该频率合成器满足设计目标,可用广泛用于各种通信和测试设备中.  相似文献   

7.
基于单片机控制的数字函数信号发生器的设计与实现   总被引:3,自引:0,他引:3  
采用直接频率信号合成器(DDS)与单片机(MCU)相结合的方法,以AD9850为频率合成器、AT89S52单片机为进程控制和任务调度的核心,设计了一个信号频率和幅度都能预置、频率稳定度优于10-6的函数信号发生器.详细介绍了DDS基本原理、系统方案构成、硬件电路设计和软件设计.通过严格的实测数据分析表明该设计是可运行的.  相似文献   

8.
目的设计能够满足过套管电阻率测井需要的具有高稳定度、超低频率等特点的正弦信号源。方法采用direct digital synthesis(DDS)技术结合单片机控制实现该信号源的设计方案。结果与结论设计实现了信号源的控制模块、DDS模块、接口电路等。实验结果表明,信号源输出频率在0~10Hz之间,频率稳定度为0.008 7%,满足过套管电阻率测井的要求。  相似文献   

9.
介绍了锁相环路频率合成器的基本原理,分析了集成锁相环芯片M C 145159的工作特性,给出了集成锁相环芯片M C 145159的一个应用实例,为高频频率合成器的设计提供了一个较好的思路.测试结果证明了设计的合理性与实用性,系统频率稳定度优于10-7.  相似文献   

10.
设计的正弦信号发生器参加了2005年全国大学生电子设计大赛,获得吉林省级设计三等奖.该正弦信号发生器是通过凌阳公司生产的SPCE061A单片机对MAX038芯片的控制来实现的.正弦波输出频率范围为1kHz~10MHz;具有频率设置功能,且频率步进为100Hz;输出信号频率稳定度优于10-4;输出电压幅度在50Ω负载电阻上的电压峰-峰值Vopp≥1V;用示波器观察时无明显失真.  相似文献   

11.
基于FPGA的DDS信号源设计与实现   总被引:9,自引:0,他引:9  
利用DDS和FPGA技术设计一种信号发生器.介绍了该信号发生器的工作原理、设计思路及实现方法.在FPGA器件上实现了基于DDS技术的信号源,并可通过键盘控制其输出波形的各种参数,频率可控范围为100 Hz~10 MHz,频率调节步进为100 Hz,频率转换时间为25 ns.  相似文献   

12.
结合倒F天线和可重构天线的优点设计一个用于中国移动多媒体广播的频率可重构的倒F天线。天线使用微波PIN二极管和变容二极管来实现频率可重构功能。测试结果说明本文设计的天线在450-800MHZ频率范围内,反射系数<-10dB的工作频率是连续可调的,结果同时说明在整个频率范围内不同工作频率下辐射方向图近似全向辐射且方向图比较稳定。  相似文献   

13.
本文设计了一个频率范围为1GHz~10GHz的宽带功率放大器。这种宽带微波功率放大器的频率范围和发射功率都考虑到经济和器件的因素,本放大器采用三级级联的方式获取1W的功率输出,设计中采用宽带增益补偿网络技术.  相似文献   

14.
介绍了电荷平衡式电压频率转换器的设计与工艺制作,并给出了研究结果.设计的电路输入电压为0~10V,输出频率为0~1MHz,在满刻度为1MHz下其非线性度小于0.5%.可广泛应用于航空、航天、雷达、通信,导航以及远距离传输等领域.  相似文献   

15.
本文探讨了一种任意波形发生器的实现方法。利用DDS原理及FPGA编程技术,在一块FPGA芯片上实现整个系统时序和波形RAM的设计,采用单片机进行显示控制及频率和相位设置,上位机采用LabWindows/CVI进行软件设计,产生的任意波形数据通过串口下载到波形RAM中,实现了任意波形的输出。经测试,本系统可输出步进为10Hz、频率范围为0.01Hz~30MHz、频率稳定度优于10-7的正弦波。本文提出的任意波形发生器的实现方法简单,性价比高,产生的波形频率分辨率高,输出频率的转换速度快,而且频率转换时,DDS系统输出波形的相位是连续的。  相似文献   

16.
设计了一种基于直接数字频率合成器(direct digital frequency,DDS)与现场可编程门阵列(field programmable gate array,FPGA)的雷达目标模拟系统频率源方案。采用自顶向下的设计方法开发系统控制代码。对DDS控制字计算公式转换,有效地解决了浮点乘法运算等效成高精度的定点运算。实现了分辨率为10 kHz,500 MHz带宽的全频段捷变,脉内线性调频信号带宽按照25 Hz步长和调频时间按照10 ns步长大范围控制的X波段频率源,频率捷变时间达到900 ns,并给出了具体实验结果。  相似文献   

17.
在超声波换能器制造标准中规定超声波换能器的标称频率与其实际回波中心频率的误差不能超过±10%。在超声波换能器设计生产中,这是一个比较难以控制的指标。本文提出了用驻波理论设计出一个物理模型,将粘接后的保护膜与晶片看作一个整体,晶片中激发的超声波在这个整体中形成驻波。对给定频率的晶片可以用保护膜的厚度来控制探头的回波频率,减小保护膜的厚度,将提高探头回波中心频率,增加保护膜的厚度,将降低探头的回波中心频率。  相似文献   

18.
本文探讨了一种任意波形发生器的实现方法。利用DDS原理及FPGA编程技术,在一块FPGA芯片上实现整个系统时序和波形RAM的设计,采用单片机进行显示控制及频率和相位设置,上位机采用LabWindows/CVI进行软件设计,产生的任意波形数据通过串口下载到波形RAM中,实现了任意波形的输出。经测试,本系统可输出步进为10Hz、频率范围为0.01Hz~30MHz、频率稳定度优于10-7的正弦波。本文提出的任意波形发生器的实现方法简单,性价比高,产生的波形频率分辨率高,输出频率的转换速度快,而且频率转换时,DDS系统输出波形的相位是连续的。
  相似文献   

19.
基于FPGA的直接数字频率合成器的设计实现   总被引:1,自引:1,他引:0  
介绍了用 Altera公司的 FPGA器件 ( F L EX10 K2 0 )实现直接数字频率合成器的工作原理、设计思路及如何与 Matlab软件接口进行设计验证  相似文献   

20.
介绍了电荷平衡式电压频率转换器的电路设计与工艺制作 ,并给出了研究结果。设计的电路输入电压为 0~ 10 V,输出频率为 0~ 1MHz,在满刻度为 1MHz下其非线性度小于 0 .5 %。可广泛应用于航空、航天、雷达、通信、导航以及远距离传输等领域  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号