共查询到20条相似文献,搜索用时 55 毫秒
1.
基于视频的车辆检测与跟踪算法综述 总被引:3,自引:0,他引:3
首先介绍了交通检测系统,指出视频交通检测技术日益成为计算机视觉领域中备受关注的前沿方向.在此基础上,分别讨论了常用的车辆检测算法,基于模型的车辆检测算法,车辆跟踪的基本类型,以及基于模板匹配、卡尔曼滤波和粒子滤波的车辆跟踪算法,同时分析比较了各种算法的优缺点.最后,展望了这一领域未来研究的热点. 相似文献
2.
为更加准确、 快速地检测与跟踪到运动目标, 将背景差分法和帧间差分法相融合对 CAMSHIFT
(Continuously Adaptive Mean-SHIFT)算法进行改进。 首先, 通过背景差分法和帧间差分法相融合确定目标所在
区域, 然后结合 CAMSHIFT 迭代算法实现目标跟踪。 实验结果表明, 该方法改变了传统 CAMSHIFT 算法需手
动选定目标和跟踪窗容易发散的局限性, 并提高了跟踪的准确性与稳定性。 相似文献
3.
视频序列中运动目标的跟踪是智能视频监控领域中的一项重要问题,目标跟踪就是建立视频序列的不同帧中目标的对应关系。针对现有方法目标特征信息考虑不足的缺陷,提出一种基于特征匹配的目标跟踪方法。实验结果表明,所提方法在实时性的前提下,可以实现运动目标的准确跟踪。 相似文献
4.
提出了一种交通视频中的Kalman滤波的多车辆跟踪算法.该算法利用Kalman滤波器反馈控制系统估计运动状态进行预测和修正,并为运动目标建立模型;利用当前车辆的信息对下一帧目标的位置进行预测,以便缩小目标的搜索范围和搜索时间,从而快速跟踪车辆.利用车辆的外接矩形框大小、质心等特征对车辆进行特征匹配,为交通视频中的车辆建立对应关系,利用新的系统参数更新模型,获得车辆的轨迹,如此反复,从而实现对车辆的跟踪.实验结果表明,此算法运算速度很快,对于车辆这样的快速运动目标,也具有较好的跟踪效果. 相似文献
5.
多运动目标探测标记及跟踪 总被引:1,自引:0,他引:1
针对跟踪系统对多目标跟踪以及对实时性的要求,给出了一种基于中心点和面积特征匹配的多运动目标探测标记及跟踪方法.该方法利用对多运动目标检测后的二值图像进行了连通成分标记,提出了一种新的探测搜索标记法,赋予不同连通区域不同的数字来区分,通过四连通区域法来实现.由运动目标的4个顶点来确定中心点,通过面积及中心点距离从而进一步去匹配,最后根据标记结果在原图像中准确地框定了各运动目标,从而实现对运动目标的跟踪.采用上述算法,对车辆视频进行了跟踪,取得了较好的实验结果,跟踪实验结果验证了该方法具有很好的实时性. 相似文献
6.
基于多特征融合的目标跟踪算法 总被引:3,自引:0,他引:3
针对单一特征的目标跟踪算法鲁棒性较差的情况,利用目标的多种观测信息通过D-S证据理论进行融合跟踪.在粒子滤波的总体框架下,嵌入Mean-Shift算法产生更加逼近真实后验分布的粒子,同时采用颜色和运动边缘特征作为观测模型,有效地避免了单一颜色特征在光照突变、姿态变化以及背景相似情况下的跟踪稳定性较差的问题.实验表明,该... 相似文献
7.
视频序列中基于特征匹配的目标跟踪方法 总被引:1,自引:0,他引:1
视频序列中运动目标的跟踪是智能视频监控领域中的一项重要问题,目标跟踪就是建立视频序列的不同帧中目标的对应关系.针对现有方法目标特征信息考虑不足的缺陷,提出一种基于特征匹配的目标跟踪方法.实验结果表明,所提方法在实时性的前提下,可以实现运动目标的准确跟踪. 相似文献
8.
基于多传感器数据融合的目标识别和跟踪 总被引:9,自引:2,他引:9
基于单传感器(雷达或红外)系统存在局限性,提出了基于多传感器(雷达和红外)信号融合的目标识别和跟踪系统,它能利用不同传感器的数据互补和冗余。特征层融合能通过利用其他传感器模块提供的目标特征信号来提高目标检测概率和降低虚警概率;决策层融合能矫正因受干扰等原因而失去目标跟踪能力的传感器模块的伺服跟踪回路,并提高抗干扰性。 相似文献
9.
10.
智能交通系统中车辆跟踪模块的准确性非常重要,其跟踪结果直接影响车流量、违章事件、交通事故的统计与分析结果。基于交通车辆,该文对目标特征跟踪法、动态轮廓跟踪法、区域中心点匹配跟踪法分别进行分析选取,并对效果最好的方法进行了实现和效果对比,从而为日后的车辆跟踪提供一种切实可行的算法以提高跟踪的效率。 相似文献
11.
12.
视频序列中动目标快速跟踪新算法的研究 总被引:1,自引:1,他引:1
准确性和实时性是视频序列图像中运动目标跟踪算法研究的重要内容。为了克服传统的模板匹配跟踪算法运算量大、跟踪速度慢的缺点,提出了一种基于多分辨率的Kalman滤波快速跟踪算法。首先利用Kalman滤波的预测功能,预先估计出目标中心点坐标,然后在该坐标为中心的区域内进行多分辨率相关匹配,最终找到最佳匹配位置。该算法具有运算量小、跟踪速度快的优点。同时还采用了自适应更新记忆滤波算法解决发散问题,提高了跟踪精度。 相似文献
13.
基于Mean-Shift和粒子滤波的两步多目标跟踪方法 总被引:2,自引:1,他引:2
针对Mean-Shift跟踪算法容易跟踪丢失以及粒子滤波跟踪算法计算量大等问题,提出了一种两步多目标跟踪算法.利用Mean-Shift进行第一步跟踪得到候选目标,在跟踪不准的情况下再利用粒子滤波进行后续的跟踪结果修正.实验结果表明两步跟踪算法既能保持Mean-Shift跟踪的实时性,也能维持粒子滤波跟踪算法的鲁棒性,有很高的实用性. 相似文献
14.
基于Mean-Shift和粒子滤波的两步多目标跟踪方法 总被引:2,自引:0,他引:2
针对Mean-Shift跟踪算法容易跟踪丢失以及粒子滤波跟踪算法计算量大等问题,提出了一种两步多目标跟踪算法。利用Mean-Shift进行第一步跟踪得到候选目标,在跟踪不准的情况下再利用粒子滤波进行后续的跟踪结果修正。实验结果表明两步跟踪算法既能保持Mean-Shift跟踪的实时性,也能维持粒子滤波跟踪算法的鲁棒性,有很高的实用性。 相似文献
15.
视频序列中运动目标跟踪新方法 总被引:5,自引:0,他引:5
提出了一种跟踪视频图像序列中运动目标的新方法.该方法利用一种基于动态信息窗口的自适应背景更新方法解决背景的复杂性问题,结合一种新的计算颜色模型解决运动阴影问题,从而得到具有精确边缘的特定运动目标.计算了运动目标灰度质心,在坐标系中记录其位置,并采用最小二乘法拟合实现了对运动目标的跟踪.实验结果表明这种方法能有效地跟踪并预测视频序列中的运动目标. 相似文献
16.
基于TI DM642硬件平台,设计了运动目标快速检测与跟踪算法.首先改进了Running Average 背景实时更新建模的方法,消除了原有算法背景更新时产生的运动目标重影.采用背景差分方法检测运动目标,速度较快.使用Otsu算法自适应求取最佳二值分割阈值分割目标,提高检测精度.在此基础上,提出了一种快速的运动目标形状中心线性预测算法,估计运动目标中心,再结合MCD(Maximum Close Distance)高精度模板匹配,进行目标的精确定位. 相似文献
17.
基于稳像技术的飞艇监控视频目标追踪 总被引:1,自引:0,他引:1
一般的目标追踪算法提取目标的颜色或轮廓特征,在图像区域内使用匹配算法完成对目标的追踪。由于飞艇容易受到气流影响,艇载相机平移误差会造成目标在视频的相邻帧间运动距离过大,传统目标追踪算法容易陷入到局部最优解而造成目标跟错或者丢失。该文提出了一种基于视频稳像的追踪方法,使用基于运动估计和混合滤波算法,首先处理视频使之平滑稳定,在此基础上利用人机交互选择目标并应用基于MeanShift的算法实现追踪。比较本文提出的算法和一般算法在飞艇视频目标追踪中的效果,结果表明:该方法在目标追踪中具有更高的准确率,同时满足实时性要求。实验证明了本文提出算法可以准确有效地处理飞艇视频目标跟踪问题。 相似文献
18.
针对目前车载式移动目标探测系统复杂、受环境影响较大、灵活性差等缺点,提出了一种基于CDMA2000移动目标的手持式设备探测的实现方案,介绍了手持式探测设备的各个模块功能,给出了整个系统工作原理及流程,重点描述了手持式设备探测的实现方案,最后又提出了进一步的实施措施。 相似文献
19.
针对视频监控系统中运动目标的跟踪问题,提出了一种基于模型动态切换的实时跟踪方法.在运动目标分割之后,跟踪系统有效判定运动目标的遮挡状态,对未遮挡的运动对象采用基于区域的跟踪模型,对于相互重叠的运动对象采用基于SIFT特征的窄基线图像匹配模型.基于区域的跟踪模型采用简单的目标区域特征以及运动预测属性,实现快速地跟踪.基于SIFT特征的图像匹配模型利用被跟踪目标在相邻图像帧之间很小的尺度和外形变化以及基于目标区域位置预测出的有限运动范围,实现快速的窄基线小范围SIFT特征匹配和跟踪.实验结果表明,该方法具有较强的鲁棒性,能有效实现复杂遮挡场景下的多目标实时跟踪. 相似文献
20.
针对背景复杂多变的视频人脸实时跟踪问题,从检测率、漏检率与错检率3个指标出发,通过改进样本选取的方式对训练样本的比例进行优化,得到一种快速人脸检测方法。在对卡尔曼的初始状态进行选取后,运用具有通过调整参数就能对被跟踪的人脸区域进行放大或者缩小功能的卡尔曼滤波方法来选取候选人脸区域,从而减少搜索时间,提高脸部区域检测速度,使基于检测的跟踪能得以实现。通过对2段视频中的人脸进行有效跟踪实验,验证了该方法的可行性。 相似文献