共查询到20条相似文献,搜索用时 46 毫秒
1.
本文对广义Improved KdV方程的初边值问题进行了数值研究,提出了一个三层加权平均线性差分格式,分析了差分解的存在唯一性,证明了格式的二阶收敛性和稳定性.数值实验验证了差分格式的有效性. 相似文献
2.
本文对一类带有齐次边界条件的Benjamin-Bona-Mahony方程的初边值问题进行了数值研究,提出了一个理论精度为O(τ~2+h~4)的三层线性差分格式,并利用能量方法分析了该格式的收敛性与稳定性.该格式合理地模拟了原问题的一个守恒性质.数值实验表明该方法是可靠的. 相似文献
3.
对Rosenau-Burgers方程的初边值问题进行了数值研究,提出了一个三层隐式差分格式,讨论了差分解的先验估计,并利用离散泛函分析方法分析了该格式的二阶收敛性与稳定性,并利用数值实验进行了验证. 相似文献
4.
本文对非线性薛定碍方程提出了一种二层差分求解格式。针对这种差分格式证明了其电荷守恒和能量守恒性,并且揭示了该格式的收敛性和稳定性。最后对提出的差分格式进行了数值实验验证。实验结果表明,理论分析与实验结果相符。 相似文献
5.
对Rosenau方程的初边值问题进行了数值研究,提出了一个三层隐式差分格式,讨论了差分解的先验估计,并利用离散泛函分析方法分析了该格式的二阶收敛性与稳定性,最后利用数值实验进行了验证. 相似文献
6.
Rosenau-Burgers 方程的三层差分格式 总被引:2,自引:4,他引:2
作者对Rosenau-Burgers方程的初边值问题进行了数值研究,提出了一个三层平均隐式差分格式,讨论了差分解的存在唯一性,并分析了该格式的二阶收敛性与稳定性,数值试验验证了该方法的有效性. 相似文献
7.
Burgers方程的一个新的差分格式 总被引:1,自引:0,他引:1
盛秀兰 《徐州师范大学学报(自然科学版)》2012,30(2):39-43
研究Burgers方程初边值问题的差分方法.首先基于Crank-Nicolson方法,通过对非线性项uux的线性化处理,建立了一个两层线性化隐式差分格式,并讨论了差分格式的可解性.其次利用离散能量估计方法证明了差分解在最大模意义下关于时间和空间的二阶收敛性.最后通过数值算例验证了理论分析结果. 相似文献
8.
利用有限差分法逼近变系数广义ZK(Zakharov-Kuznetsov)方程的初边值问题,建构一个三层线性化隐式差分格式.利用离散能量估计方法,讨论差分格式解的唯一性以及x方向的一阶差商在L∞模意义下的收敛性、稳定性和收敛阶数,并通过数值算例验证理论分析的结果. 相似文献
9.
作者针对非线性Sobolev-Galpern方程的初边值问题,提出了一个有限差分格式,证明了差分解的长时间收敛性和稳定性,并利用数值算例验证了方法的有效性. 相似文献
10.
作者对一维半线性色散耗散波动方程建立了一类紧致差分格式,讨论了差分解的存在唯一性,分析了该格式的收敛性、稳定性,得到了收敛阶为O(τ2+h4).数值试验验证了方法的有效性. 相似文献
11.
对带有齐次边界条件的Rosenau-KdV-RLW方程的初边值问题进行了数值研究,提出了一个具有二阶理论精度的两层线性化差分格式,该格式合理地模拟了原问题的一个守恒性质,证明了差分解的存在唯一性,在不能得到其差分解的最大模估计的情况下,综合运用数学归纳法和离散泛函分析方法,直接证明了该格式的收敛性和稳定性.数值实验表明该方法是可靠的. 相似文献
12.
从动力学系统的实际问题出发,针对Rosenau-Burgers方程的初边值问题进行了数值研究,揭示了复杂离散动态系统理论中非线性波耗散问题. 在方程求解的时间和空间区域,采用网格化方法,提出了一个新的三层隐式差分格式,对差分解进行了先验估计,并给出了该格式的稳定性和收敛性的严格理论证明. 数值实验的结果表明,差分格式简单而有效、计算速度快、稳定性好,并且差分格式使用了加权方法,使其具有普遍意义和推广价值. 相似文献
13.
利用加耗散项的方法,提出解四阶抛物型方程的若干新的差分格式,研究它们的局部截断误差阶及稳定性.数值例子表明,格式是有效的. 相似文献
14.
以RLW方程的一个新的守恒差分格式对正则长波(RLW)方程的初边值问题进行了讨论,提出了一个新的三层差分格式.该格式很好地模拟了RLW方程初边值问题的能量守恒关系,且是稳定的和收敛的.数值结果表明,该格式精度明显好于正则长波方程一个新的差分方法中的格式,特别取适当参数时,精度提高了近一个数量级,因此是一个实用而可靠的数值算法. 相似文献
15.
对Benjamin-Bona-Mahony(BBM)方程的初边值问题进行了数值研究,提出了一个两层拟紧致隐式差分格式,讨论了差分解的存在唯一性,并利用离散泛函分析方法分析了该格式的二阶收敛性与稳定性,并利用数值实验进行了验证. 相似文献
16.
对流方程的一类新的恒稳差分格式 总被引:3,自引:2,他引:3
曾文平 《华侨大学学报(自然科学版)》1997,18(3):225-230
对对流方程u1=aux构造一族含双参数的三层差分格式,当参数a=1/2,β=0时得到双层格式,这些格式对任意非负参数均为绝对稳定性,其局部截断误差为O(△t^2+△x^4)。 相似文献
17.
高阶抛物型方程的两层隐式差分格式 总被引:3,自引:0,他引:3
曾文平 《漳州师范学院学报》2004,17(3):1-5
本文构造出解高阶抛物型方程(δ)u/(δ)t=(-1)m 1(δ)2mu/(δ)x2m(m为正整数)的局部截断误差阶为o(τ2 h4)的两层隐式差分格式,并证明了当m=1,2,3是它是绝对稳定的.数值例子表明本文所提格式是有效的,理论分析是正确的. 相似文献
18.
通过对空间分数阶导数采用修正的Grunwaid有限差分逼近,给出了数值求解时间-空间分数阶导数对流扩散方程的一种隐式差分格式.证明了格式的兼容性、无条件稳定性及一阶收敛性,并给出了数值算例. 相似文献
19.
本文利用加耗散项的方法,建立了高维抛物型方程的若干恒稳的三层显式差分格式,推广了文[1]的结果.并用数值例子表明这些格式是有效的. 相似文献
20.
从动力学系统的实际问题出发,对广义Rosenau Burgers方程的初边值问题进行了数值研究,揭示了复杂离散动态系统理论中非线性波耗散问题.提出了一个新的两层隐式差分格式,对差分解进行了先验估计,得到了差分解的存在唯一性,并给出了该差分格式的收敛性和稳定性的严格理论.数值实验结果表明该方法简单而有效、稳定性良好.该格式具有理论意义和推广价值. 相似文献