首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
提出了数值求解一维非稳态对流扩散反应方程的一种隐式差分格式。首先将模型方程利用指数函数转化为对流扩散方程,构造它的差分格式,然后对差分方程的系数进行相应处理,并进行回代,得到对流扩散反应方程的隐式差分格式,其截断误差为O(τ2+h2),采用von Neumann方法证明了格式是无条件稳定的,并且由于每一时间层上只用到了3个网格点,所以可直接采用追赶法求解差分方程,数值结果显示了算法的有效性。  相似文献   

2.
基于非均匀网格,提出了一种求解一维定常对流扩散反应方程的高精度紧致差分格式。首先采用坐标变换方法将原方程由物理空间的非均匀网格转换为计算空间的均匀网格,然后给出一阶导数和二阶导数在均匀网格上的中心差分逼近式,并结合变换后的方程,得到了定常对流扩散反应方程具有四阶精度的紧致差分格式。最后,通过数值算例验证了该方法的精确性和高分辨率的特点。数值实验结果表明,对于所研究问题,该方法较不进行坐标变换而直接在物理域上建立的非均匀网格上的高阶紧致格式具有更高精度。  相似文献   

3.
首先,针对一维对流扩散反应方程,借助截断误差余项修正的方法,将中心差分格式余项中未知函数的三阶和四阶导数项利用一阶导数的表达式来代替,从而提出一种新的紧致差分格式,具有四阶精度.然后,为了简化计算,对格式常系数形式的耗散误差和色散误差进行分析,证实该格式的低耗散性.接着,将该方法推广到二维,运用降维的思想转化成2个一维形式的定常对流扩散反应方程,并用求解一维方程的方法,离散后相加即得二维对流扩散反应方程的紧致差分格式.最后,通过数值实验验证本文格式的精确性和可靠性.  相似文献   

4.
总结了近些年出现的针对二维对流扩散方程给出的多种差分格式;随后对一维模型给出了一种基本二阶格式,然后将结果直接推广应用到二维情形,得到一种新的无条件稳定的二阶五点差分格式;最后通过数值实验与前面诸多格式比较,结果表明该格式具有非常好的计算效果.  相似文献   

5.
针对一维定常对流扩散反应方程,提出了一种四阶精度的有理型紧致差分格式,其局部截断误差为O(h4);然后通过Richardson外推技术和算子插值法将本文格式的精度提高到六阶.因为格式仅涉及到3个网格基架点,所以对于Dirichlet边值问题,由差分格式可得三对角线性方程组,可采用追赶法进行求解.最后通过数值算例验证了本文方法的精确性和可靠性.  相似文献   

6.
一种求解一维对流扩散方程的高精度紧致隐式差分格式   总被引:1,自引:0,他引:1  
提出了数值求解一维非定常对流扩散方程的一种两层四阶紧致隐式差分格式,其截断误差为O(τ^2+h^4).采用von Neumann方法证明了格式是无条件稳定的,并且由于每一时间层上只用到了3个网格点,所以可直接采用追赶法求解差分方程.数值实验结果验证了该方法的精确性和可靠性.  相似文献   

7.
针对1维非定常对流扩散方程,首先建立了1种2层有理型高阶紧致差分格式,其局部截断误差为O(h4+τ2)。然后采用 von Neumann 分析方法证明了该格式是无条件稳定的。由于在每个时间层上只涉及到3个网格点,因此可直接采用追赶法求解此差分方程。最后通过3个数值算例验证了方法的精确性和可靠性。数值结果表明:所述格式不仅能够适用于非定常对流扩散问题,而且能够较好地求解非定常纯对流问题或纯扩散问题,并且其计算效果均优于 Crank-Nicolson(C-N)格式和指数型高阶紧致(EHOC)差分格式。  相似文献   

8.
提出了一维扩散反应方程的一种隐式高精度紧致差分格式,空间二阶导数采用四阶紧致差分格式进行离散,时间导数采用四阶向后欧拉公式进行离散,格式截断误差为Oτ4+h4),即时间和空间都可以达到四阶精度,最后通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

9.
该文提出了在周期和Dirichlet边界条件下的1维对流扩散方程的紧致差分格式.在这2种边界条件下对空间变量使用4阶紧致差分格式,对时间变量利用3次Hermite插值公式构造空间和时间同时具有4阶精度的数值格式,并证明了格式的绝对稳定性,最后通过对2种边界条件下的算例进行数值实验和比较,验证了格式的精确性和可靠性.  相似文献   

10.
含源定常对流扩散方程的高精度紧致差分格式   总被引:2,自引:1,他引:2  
对一维、定常、常系数、含源对流扩散方程给出了一种原则上可达任意阶精度的三点紧致差分格式,该格式具有不依赖ε的一致收敛性和无条件稳定性,故而适应于大的Péclet数,即对流占优问题.数值实验验证了理论分析的结果.  相似文献   

11.
非均匀网格上求解对流扩散问题的高阶紧致差分方法   总被引:1,自引:0,他引:1  
基于非均网格上函数的泰勒级数展开,推导出求解一维对流扩散问题的高阶紧致差分格式.对于离散化得到的代数方程组,采用BiCGStab(2)迭代法求解.数值实验表明,该格式对于扩散占优、对流占优及边界层问题都有很好的适应性,对于数值模拟待求物理量的大梯度变化具有很高的分辨率,计算结果明显优于传统的均匀网格上的差分格式.在具体的数值模拟中,可根据实际物理量的变化规律,选取适当的网格生成变换函数,合理地调整非均匀网格的疏密分布,从而获得比在含相同结点数的均匀网络系统中更为精确的数值结果.  相似文献   

12.
针对对流扩散方程,与传统的典型差分方法对比,给出一种新型差分格式的待定系数法,并进行稳定性和截断误差分析,所得的格式精度高且绝对稳定.  相似文献   

13.
基于二阶导数的四阶Padé型紧致差分逼近式,并结合原方程本身,得到了二维Helm-holtz一种四阶精度的紧致差分格式.该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值,边界处对于二阶导数利用四阶显式偏心格式.然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的二维Helmholtz方程四阶紧致差分格式的精度提高到六阶.最后,通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

14.
提出了数值求解二维泊松方程基于非均匀网格的高阶紧致差分格式,通过选取合适的网格分布参数求解具有边界层的数值算例,空间可以达到四阶精度.并与均匀网格上的计算结果进行比较,充分验证了本文非均匀网格高精度紧致格式的精确性和优越性.  相似文献   

15.
解双曲方程的一种高精度加权差分格式   总被引:1,自引:0,他引:1  
利用一阶微商的四阶精度紧致差分逼近公式,给出了解双曲方程精度为o[(1-2θ△t,△t2+△x4)]的一种新的加权差分格式,并通过Fourier方法讨论格式的稳定性,证明了当0≤θ≤1/2时,格式是无条件稳定的;当1/2≤θ≤1时,格式是不稳定的,最后通过数值试验说明了这种方法的有效性.  相似文献   

16.
研究了变系数反应扩散方程的差分格式.首先用Taylor公式导出紧差分格式;再通过补充边界值给出了此格式的求解形式;接着用能量方法证明了差分格式的解的存在性、唯一性、稳定性和收敛性;最后用数值例子验证了此方法的可行性和精确度.  相似文献   

17.
本文通过分析研究,提出了一种新的差分格式。结果表明该方法有较高精度和稳定性,且可以防止因差分格式而产生的振动解和负浓度等问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号