首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
凭借着良好的光电、力学和热学性能,石墨烯是目前凝聚态物理领域一个重要的研究热点.而且由于石墨烯的色散关系在狄拉克点附近呈现线性特性,石墨烯的光电特性可以通过外加电场、磁场和温度来加以调节.因此,石墨烯是研究可调谐器件的良好平台.基于石墨烯的电导率随费米能级有明显改变的特点,在分析石墨烯器件的调制机制的基础上,对石墨烯可调谐器件在太赫兹、中红外和近红外的应用发展进行了综述研究.  相似文献   

2.
报道一种在离子液体辅助条件下通过小分子热分解聚合法制备硼掺杂石墨烯和氮掺杂石墨烯的新方法.在对抽制备的石墨烯材料的形貌、光学性质、电学性质及半导体类型进行表征的基础上,进一步研究用电沉积方法组装的石墨烯光电极薄膜在光化学电池和固态光伏器件中的光电转换性能.实验结果表明,文中合成的掺杂石墨烯具有良好的光电转换性能,其中以硼掺杂石墨烯和氮掺杂石墨烯的复合薄膜最佳,其光电化学电池的光电流达到(4.69±0.05)×10~(-5)A/cm~2,其固体器件的光电流响应为(5.38±0.38)×10~(-6)A/cm~2.  相似文献   

3.
 讨论了近年来石墨烯在太阳能电池、有机发光二极管以及场致发射器件方面的应用研究。石墨烯是碳的同素异形体的一种,是二维的薄膜材料,具有独特的导电特性及机械弯曲性能,可以作为太阳能电池、有机发光器件的柔性电极;石墨烯与有机聚合物材料复合可以形成大的给体受体界面,有利于太阳能电池中激子的扩散速率、载流子迁移率的提高,可以作为有机太阳能电池的电子受体材料;石墨烯具有一维尖锐的刀口状边缘,具有大的电场增强系数,同时由于石墨烯自身的良好导电能力,可以作为场致发射器件中的电子传导与电场发射材料。石墨烯在光电器件中应用的深入研究有望突破目前光电技术的发展瓶颈,是一个极具前景的新研究领域。  相似文献   

4.
首先介绍了石墨烯的光电特性及光调制机理,在此基础上结合石墨烯在光调制器中的研究及应用,综述了国内外基于石墨烯的光调制器研究进展,重点叙述了条形波导结构、M-Z结构、环形腔结构以及一些其它结构光调制器的工作原理及各器件的特性。  相似文献   

5.
单层石墨烯具有可调的太赫兹电导,有望应用于制作新型太赫兹器件,然而这种调谐的变化范围有限,通过多层石墨烯的堆叠可以拓展石墨烯太赫兹器件的性能上限。本文通过太赫兹时域光谱研究了石英衬底上不同层数堆叠的石墨烯的太赫兹透过特性,并使用Drude模型以及菲涅尔定律对实验结果进行了理论模拟。实验数据与理论结果的匹配表明:随机堆叠的多层石墨烯在太赫兹波段可以看作没有电子耦合的多个单层石墨烯,其太赫兹电导具有更宽的调谐范围,同时化学掺杂可以进一步提高材料的载流子浓度,从而获得更高的太赫兹电导。  相似文献   

6.
二硫化钼的电子输运与器件   总被引:1,自引:0,他引:1  
二硫化钼具有与石墨烯类似的二维层状结构,因其宽禁带、无悬挂键等特性,在以晶体管为代表的逻辑器件领域有广泛的应用;另外,单层二硫化钼为直接带隙半导体,在光电器件中应用也逐渐引起研究人员的关注.本文综述了近期基于二硫化钼晶体管器件电子输运研究、及其在电子、光电器件领域研究进展;除此,对于二维过渡金属二硫属化物中诸如二硫化钨、二硒化钨在器件方面应用也进行了简单的讨论.  相似文献   

7.
 近红外波段的电光调制器是未来光信号处理和计算系统中的关键功能元器件,硅基石墨烯电光调制器在结构尺寸、调制速率、调制带宽及大规模片上集成等方面具有诸多潜在优点而引起人们的广泛关注和重视。本文介绍了石墨烯的光电特性及光调制机理,结合石墨烯在近红外波段电光调制器中的研究及应用,综述了国内外近红外波段硅基石墨烯电光调制器的研究进展,重点叙述了条形波导结构、谐振结构、纳米梁结构的电光调制器的工作原理及各器件的特性,展望了硅基石墨烯电光调制器的研究方向。  相似文献   

8.
采用高纯半导体碳纳米管薄膜和石墨烯构建复合结构光探测器, 研究其光电响应特性。结果表明, 在光照下, 顶层石墨烯中的光生载流子通过碳纳米管与石墨烯之间薄的非晶硅层, 隧穿至底层的碳纳米管薄膜中, 在非晶硅层两侧分别富集电子和空穴, 形成光致栅压(Photogating), 有效地改变了碳纳米管薄膜晶体管的电流。器件在可见光(633 nm)条件下得到响应度为83 mA/W, 并在近红外波段范围内仍保持好的光响应特性。由于石墨烯具有宽谱光吸收特性, 半导体碳纳米管薄膜晶体管具有小的暗电流, 碳纳米管–石墨烯复合光探测器发挥了两种材料的优势, 为今后高性能宽谱光电探测器的制备奠定了基础。  相似文献   

9.
本文章主要研究通过化学气相沉积法制备大面积的单层石墨烯薄膜,利用转移法将薄膜转移到任意衬底上,并使用拉曼光谱图表征此薄膜为单层的石墨烯薄膜.从而制备出大面积高质量可转移的石墨烯薄膜.为未来研究石墨烯的一些物理特性、化学特性及其一些器件有着重要的意义.  相似文献   

10.
硅纳米线阵列(SiNWA)因其优异的陷光性在石墨烯/硅异质结太阳能电池研究中引起了广泛关注.然而平面结构的石墨烯难以与SiNWA形成包覆结构,严重影响了器件的光伏性能.该文采用等离子体增强化学气相沉积法直接在SiNWA上生长石墨烯纳米墙(GNWs),与SiNWA形成核壳结构,增加了器件的有效结区面积并抑制了硅纳米线表面的载流子复合;研究了生长时间对GNWs的晶体质量、光学和电学性能、形貌的影响.结果表明:所制备的GNWs可形成良好的导电网络并表现出p型掺杂;随着生长时间的延长,GNWs的透光性下降,导电性增强,对SiNWA的包覆性变好;当GNWs生长时间为120 s时,制备的GNWs/SiNWA太阳能电池获得了4.11%的最佳光电转换效率.该研究为制备低成本、高效率的石墨烯/硅太阳能电池提供了一条工艺简单而有效的途径.  相似文献   

11.
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.  相似文献   

12.
Gomes KK  Mar W  Ko W  Guinea F  Manoharan HC 《Nature》2012,483(7389):306-310
The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the relativistic magnetic quantum limit, which has so far been inaccessible in natural graphene. Molecular graphene provides a versatile means of synthesizing exotic topological electronic phases in condensed matter using tailored nanostructures.  相似文献   

13.
Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium--graphene--is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO(2)/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.  相似文献   

14.
Half-metallic graphene nanoribbons   总被引:2,自引:0,他引:2  
Son YW  Cohen ML  Louie SG 《Nature》2006,444(7117):347-349
Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals--for example, the Heusler compounds--and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic devices. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic properties can be controlled by the external electric fields. The results are not only of scientific interest in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at the nanometre scale, based on graphene.  相似文献   

15.
 石墨烯具有独特的电学和力学等性能。宏观的石墨烯纤维由纳米级的石墨烯组装而成,其集成了微观石墨烯的突出性能,因而不仅具有常规纤维的柔韧性可用于纺织物,同时具有轻质、可成型加工及易于功能化等显著优势。概述了石墨烯纤维研究方面的最新进展,包括其可控制备技术、功能化及其在柔性纤维器件如驱动器、机器人、光伏电池、电容器等方面的应用。  相似文献   

16.
透明导电薄膜是触摸器件以及液晶显示器等的重要组成部分,制备透明导电薄膜的材料主要有金属氧化物、导电聚合物、碳材料、金属材料和复合材料等。其中,一维银纳米线和二维石墨烯材料制备透明导电薄膜具有光电性能优异、化学性能稳定和柔韧性好等特点,有望应用于柔性电子设备中。介绍了石墨烯银纳米线透明导电薄膜常用的制备方法:旋涂法、真空抽滤法、棒涂法、喷涂法、滴涂法等5种以及各种制备方法的优缺点;总结了石墨烯银纳米线复合薄膜的应用领域;展望了石墨烯银纳米线透明导电薄膜的发展前景。  相似文献   

17.
提出了一种新型的可利用改变外加偏置磁场对其特性进行调节的电磁带隙(EBG)——铁氧体EBG,并采用混合基有限元和Floquet定理相结合的方法,对其散射特性进行了仿真计算和数值分析。通过对不同外磁场下该类EBG的透射系数的频率响应的比较和分析表明:该类EBG较相同结构的各向同性EBG具有更好的通带和阻带特性,更重要的是通过调节外加偏置磁场的确可以改变该EBG的工作状态。这将可能研发出一种新型的功能可调的EBG。  相似文献   

18.
利用石墨烯的电导率可调特性设计了一种超宽带可调超材料吸波体。模拟计算了不同石墨烯费米能级时吸波体的吸收率,结果表明,当石墨烯费米能级为0.7 eV时,吸波体在1.74 GHz ~10.44 GHz 的吸收率保持在90%以上,实现了电磁波的超宽带吸收;当改变外加电压使石墨烯的费米能级从0.7 eV逐渐减少到0 eV时,吸波体在1.74 GHz~10.44 GHz的吸收率逐渐下降,其调制深度可达53.8%,实现了吸收率可调的功能;通过对表面电流分布进行仿真与分析,阐述了其电磁波宽带吸收及吸收率可调的机理;模拟分析了石墨烯费米能级为0.7 eV时,入射波极化状态和入射角度对吸波体吸收特性的影响,结果表明,由于结构单元的旋转对称性,吸波体的吸收特性具有极化不敏感的特点;随着电磁波入射角度的增大,其吸收率逐渐降低。  相似文献   

19.
基于利用磁控溅射方法制备的纳米银颗粒,研究了纳米银颗粒局域表面等离激元对介质环境的敏感程度,作为媒介提高光与物质相互作用的可能性.研究结果表明:传感灵敏度最大可达到约931 nm/RIU,石墨烯拉曼信号可提高约40倍,可见光吸收提高约10倍.该研究表明制备简单、光学响应灵敏的纳米银颗粒在传感、光电探测及分子识别等领域具有潜在的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号