共查询到18条相似文献,搜索用时 78 毫秒
1.
近年来,网络媒体微博的迅速发展,为命名实体的识别研究提供了一种全新的载体.针对中文微博文本短、表达不清、网络化严重等特点,论文提出了一种规则与统计相结合的中文微博命名实体识别方法.该方法首先利用中文微博的主题标签对处理后的数据进行筛选,然后再选取合适的特征模板,并利用条件随机场模型(Conditional random fields, CRF)进行实体识别.为了满足实验要求,该文将传统网页爬虫方法与API接口采集方法相结合进行微博数据采集.实验结果表明,该方法能够有效提高中文微博命名实体的识别效果. 相似文献
2.
针对2013年CCF自然语言处理与中文计算会议(NLP&CC2013)中文微博实体链接的任务, 使用CCF提供的新浪微博数据作为训练和测试数据, 利用西南交通大学耶宝智慧中文分词平台作为自然语言预处理工具, 提出一种实体链接的方法。该方法应用改进的拼音编辑距离算法和后缀词表匹配法, 提出实体聚类消歧与基于百度百科词频的同类实体消歧相结合的消歧方法。在2013年CCF 中文微博实体链接评测任务中正确结果的准确率为0.8838, 在10 个参赛队伍中名列第3位。表明该方法有效并可以适应文本中的噪声。 相似文献
3.
多特征中文命名实体识别 总被引:1,自引:0,他引:1
命名实体识别任务是对文本中的实体进行定位,并将其分类至预定义的类别中.目前主流的中文命名实体识别的模型是基于字符的命名实体识别模型.该模型在使用句法特征之前,需先进行分词,不能很好的引入句子的句法信息.另外,基于字符的模型没有利用词典中的先验词典信息,以及中文偏旁部首蕴含的象形信息.针对上述问题,论文提出了融合句法和多粒度语义信息的多特征中文命名实体识别模型.实验证明论文模型相对目前主流模型有了较大的提高,同时论文还通过实验分析了各种特征对模型识别效果的影响. 相似文献
4.
鉴于现有中文实体链接基准语料库的缺乏, 在ACE2005中文语料库和中文维基百科的基础上, 通过自动构造和人工标注的方法, 构建一个中文实体链接语料库及其相关的中文知识库。与传统的英文实体链接语料库不同, 构造的中文实体链接语料库是基于实体而非单个实体指称(Mention)。中文实体链接语料库的构建, 将为中文实体链接研究提供一个可用的基准平台。 相似文献
5.
预训练语言模型能够表达句子丰富的句法和语法信息,并且能够对词的多义性建模,在自然语言处理中有着广泛的应用,BERT(bidirectional encoder representations from transformers)预训练语言模型是其中之一。在基于BERT微调的命名实体识别方法中,存在的问题是训练参数过多,训练时间过长。针对这个问题提出了基于BERT-IDCNN-CRF(BERT-iterated dilated convolutional neural network-conditional random field)的中文命名实体识别方法,该方法通过BERT预训练语言模型得到字的上下文表示,再将字向量序列输入IDCNN-CRF模型中进行训练,训练过程中保持BERT参数不变,只训练IDCNN-CRF部分,在保持多义性的同时减少了训练参数。实验表明,该模型在MSRA语料上F1值能够达到94.41%,在中文命名实体任务上优于目前最好的Lattice-LSTM模型,提高了1.23%;与基于BERT微调的方法相比,该方法的F1值略低但是训练时间大幅度缩短。将该模型应用于信息安全、电网电磁环境舆情等领域的敏感实体识别,速度更快,响应更及时。 相似文献
6.
近年来中文嵌套命名实体识别的相关研究进展缓慢,BERT和RoBERTa等预训练模型在处理中文语言时,导致模型只能学习到不完整的语义表示.针对以上两个问题,首先使用现有的中文命名实体基准语料库ACE2004和ACE2005,依照原始语料的中心词和外延的关系自动构造嵌套命名实体;然后使用分层ERNIE模型在构建好的中文语料库上进行中文嵌套命实体识别的研究,相较于BERT等模型,ERNIE模型则是通过对中文实体语义单元的掩码,使得模型学习完整概念的语义表示.实验结果表明,分层ERNIE模型在ACE2004和ACE2005两个中文嵌套命名实体语料库上F1值分别为84.5%和85.9%,性能优于BERT和RoBERTa模型. 相似文献
7.
针对目前中文命名实体识别研究集中在输入文本的特征的提取,且输入的嵌入表示直接影响模型的性能这一特点,从背景知识、研究现状和未来发展等方面对中文命名实体识别的研究展开全面的调查.回顾了命名实体识别的发展进程,解释中文命名实体识别的研究难点,归纳不同的研究方法,分为基于字的模型、基于词的模型和基于字-词的模型;介绍目前中文命名实体识别的主流数据集、标注方法和评价指标,从不同角度分析了各数据集的特点;讨论了近几年深度学习技术在中文命名实体识别中的最新研究进展,介绍各分类下具有代表性的模型及性能对比,分析性能优劣原因;总结了中文命名实体识别当下所面临的一些挑战,讨论了未来更具有研究价值的方向,促进中文命名实体识别的进一步发展. 相似文献
8.
在中文命名实体识别任务中,字信息融合词汇信息能丰富文本特征,但一个字可能对应多个候选词汇,容易产生词汇冲突,融合无关词汇信息会影响模型的识别效果,对此提出了词典信息分层调整的中文命名实体识别方法。首先将所有潜在词语按照词语长度进行分层,通过高层词语反馈调整低层词语的权重来保留更有用的信息,以此缓解语义偏差问题和降低词汇冲突影响;然后将词汇信息拼接到字信息来增强文本特征表示。在Resume和Weibo数据集上的实验结果表明,本文方法与传统方法相比具有更优的效果。 相似文献
9.
10.
《华东师范大学学报(自然科学版)》2021,(5)
命名实体识别(Named Entity Recognition, NER)作为自然语言处理的基本任务之一,一直以来都是国内外研究的热点.随着金融互联网的快速发展,迄今为止,金融领域中文NER不断进步,并得以应用到其他金融业务中.为了方便研究者了解金融领域中文NER方法的发展状况和未来发展趋势,进行了一项相关方法的研究和总结.首先,介绍了NER的相关概念和金融领域中文NER的特点;然后,按照金融领域中文NER的发展历程,将研究方法分为基于字典和规则的方法、基于统计机器学习的方法和基于深度学习的方法,并详细介绍了每类方法的特点和典型模型;接下来,简要概括了金融领域中文NER的公开数据集和工具、评估方法及其应用;最后,向读者阐述了目前面临的挑战和未来的发展趋势. 相似文献
11.
中文命名实体识别在中文信息处理中扮演着重要的角色. 在中文信息文本中, 许多命名实体内部包含着嵌套实体. 然而, 已有研究大多聚焦在非嵌套实体识别, 无法充分捕获嵌套实体之间的边界信息. 采用分层标注方式进行嵌套命名实体识别(nested named entity recognition, NNER), 将每层的实体识别解析为一个单独的任务, 并通过Gate过滤机制来促进层级之间的信息交换. 利用公开的1998年《人民日报》NNER语料进行了多组实验, 验证了模型的有效性. 实验结果表明, 在不使用外部资源词典信息的情况下, 该方法在《人民日报》数据集上的F1值达到了91.41%, 有效提高了中文嵌套命名实体识别的效果. 相似文献
12.
针对目前中文命名时实体识别方法中存在的中文边界识别困难、模型梯度、文本特征不够充分等问题,提出了一种融合词性特征与双向时间卷积网络的中文命名时实体识别模型。该模型提出使用XLNet预训练语言模型生成对应的词嵌入表示,融合后使用双向时间卷积网络提取文本前向特征与后向特征。实验中对时间卷积网络的空洞因子、卷积层数和卷积核数进行参数实验并分析其影响原因,结果表明,该模型与其他模型相比,能够更准确且有效地提取文本中的实体。 相似文献
13.
基于命名实体的Web新闻文本分类方法 总被引:1,自引:0,他引:1
文章对Web新闻领域的文本自动分类问题进行了研究,提出一种基于新闻实体要素的分类方法;在应用空间向量模型的基础上,充分考虑命名实体对Web新闻文本分类的特殊作用,并进行了实验.实验结果表明,以新闻实体要素为特征的文本分类系统可得到较高的分类精度,该方法具有一定的实用价值. 相似文献
14.
针对双向长短时记忆网络-条件随机场(bi-directional long short-term memory-conditional random field,BiLSTM-CRF)模型存在准确率低和向量无法表示上下文的问题,提出一种改进的中文命名实体识别模型。利用裁剪的双向编码器表征模型(bidirectional encoder representations from transformers,BERT)得到包含上下文信息的语义向量;输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络及多头自注意力层捕获序列的全局和局部特征;通过条件随机场(conditional random field,CRF)层进行序列解码标注,提取出命名实体。在人民日报和微软亚洲研究院(Microsoft research Asia,MSRA)数据集上的实验结果表明,改进模型在识别效果和速度方面都有一定提高;对BERT模型内在机理的分析表明,BERT模型主要依赖从低层和中层学习到的短语及语法信息完成命名实体识别(named entity recognition,NER)任务。 相似文献
15.
基于条件随机场的越南语命名实体识别方法 总被引:2,自引:0,他引:2
针对越南语特点,提出一种基于条件随机场模型的越语命名实体识别方法。该方法针对越语词和词性的特点,采用条件随机场算法,选取词和词性作为特征,定义特征模版,选取越南语新闻文本,标记地名、人名、组织机构等6类实体语料,训练获得越南语实体识别模型,实现实体识别。实验结果表明该方法提取实体的准确率达到83.73%。 相似文献
16.
汉字是象形文字,其字形特征对于中文命名实体识别有着重要的作用。针对双向长短期记忆模型(bi-directional long short-term memory,BiLSTM)提取部首,命名实体识别准确率不高的问题,提出笔画组成编码器,用于获取汉字的字形特征,并将笔画字形特征向量和预训练的语言表征模型(bidirectional encoder representation from transformers,BERT)输出的字向量进行拼接,将拼接后的向量放入双向长短期记忆模型与条件随机场(conditional random field,CRF)相连的标注模型(BiLSTM-CRF)中进行命名实体识别。实验表明,所提的方法在Resume数据集上命名实体识别准确率有显著提升。相较于用卷积神经网络做编码器提取汉字字形特征,准确率高出0.4%。相较于使用BiLSTM提取的部首特征模型和加入词典的长短期记忆模型(Lattice LSTM)模型其准确率分别提升了4.2%、0.8%。 相似文献
17.
基于双向编码器表示模型和注意力机制的食品安全命名实体识别 总被引:1,自引:0,他引:1
针对于目前传统的命名实体识别模型在食品案件纠纷裁判文书领域的准确率不足的问题,在双向长短时记忆网络的基础上提出一种基于双向编码器表示模型(bidirectional encoder representations from transformers,Bert)和注意力机制的命名实体识别模型.模型通过Bert层进行字向量... 相似文献
18.
材料领域的文献中蕴含着丰富的知识, 利用机器学习和自然语言处理等手段对文献进行数据挖掘是研究热点. 命名实体识别(named entity recognition, NER)是高效利用挖掘和抽取数据中信息的首要步骤. 为了解决现有实体识别方法中存在的向量表示无法解决一词多义、模型常提取上下文特征而忽略全局特征等问题, 提出了一种基于上下文词汇匹配和图卷积命名实体识别方法. 该方法首先利用 XLNet 获取文本的上下文动态特征, 其次利用长短期记忆网络并结合文本上下文匹配词汇的图卷积神经网络(graph convolutional network, GCN)模型分别获取上下文特征与全局特征, 最终经过条件随机场输出标签序列. 2 种不同语料对模型进行验证的结果表明, 该方法在材料数据集上的精确率、召回率和 F1 值分别达到 90.05%、88.67% 和 89.36%, 可有效提升命名实体识别的准确率. 相似文献