首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高离子导电率、电化学惰性的锂铌氧化物对富锂层状材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2进行包覆改性研究.Li[Li0.2Co0.13Ni0.13Mn0.54]O2通过共沉淀-高温固相法合成,不同包覆量的复合材料通过一个简单的化学水解沉积的方法得到.研究了包覆材料的结构随温度变化对其主体材料结构、形貌及电化学性能的影响.XRD测试表明,包覆材料结构从LiNbO3(500℃)、LiNbO3-Li3NbO4(600~700℃)的混合相,到Li3NbO4(800℃)发生递变.包覆材料的电化学循环性能得到提升,混合相存在时尤为显著.  相似文献   

2.
采用溶胶凝胶方法合成Li[Li0.2Mn0.54Ni0.13Co0.13]O2富锂正极材料,通过化学沉积技术在Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒表面沉积La F3颗粒.利用X-射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安及交流阻抗测试系统研究了La F3包覆对材料电化学性能的影响.合成的材料具有α-Na Fe O2层状结构且La F3颗粒均匀包覆在颗粒表面,表面修饰La F3后的样品表现出更高的比容量和更好的倍率性能,电化学性能测试表明La F3表面修饰层有助于缓解电解液中HF对活性材料的腐蚀,降低电荷跃迁电阻(Rct),增强锂离子的扩散能力.  相似文献   

3.
Li_(1.2)Fe_(0.052)Ni_(0.078)Co_(0.13)Mn_(0.54)O_2/C是先以MnO_2为模板用铁离子替换镍离子制备好Li_(1.2)Fe_(0.052)Ni_(0.078)Co_(0.13)Mn_(0.54)O_2,然后用碳包覆的方法制备而成的。经过电化学性能测量发现这种材料具有良好的电化学性能,通过XRD分析表明,所得材料具有层状α-NaFeO_2结构。用透射电镜观察发现,通过碳表面处理可以产生清晰的界面。样品在0.1C,电压2.5~4.8V下充放电70次后发现电池容量可达~210(mA·h/g)左右,且循环结束后容量可保持在86%左右。  相似文献   

4.
采用控制结晶法制备富锂锰基固溶体正极材料Li1.17Mn0.53Ni0.2Co0.1O2,并采用AlF3对其进行包覆,通过XRD、SEM、TEM和电池充放电测试研究了AlF3包覆量对材料结构和电化学性能的影响.TEM观察表明,在颗粒表面形成一层10~20nm厚的AlF3包覆层.电化学性能测试表明,AlF3包覆可有效改善材料的循环性能,提高材料的放电比容量和库仑效率.当包覆量为1%时,样品具有最优异的电化学性能,在0.05℃下的首次放电比容量由未包覆时的228mAh/g提升至274mAh/g,库仑效率高达86.7%;在0.5℃下经50次循环后容量保持率为93%.  相似文献   

5.
通过共沉淀-高温固相法合成Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)固溶体正极材料,并通过溶液法对其进行LiAlO2包覆。采用X线衍射(XRD)、扫描电镜(SEM)、透视电镜(TEM)、电化学交流阻抗谱(EIS)和恒电流充放电测试分析样品的结构、形貌及电化学性能。研究结果表明:包覆前后样品都具备α-NaFeO2型层状结构;包覆后,Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)的循环稳定性和倍率性能都得到显著提高。包覆量为5%(质量分数)的样品性能最优。首次放电比容量为254.64mA·h/g。50次循环后,容量保持率由84.5%提高至98.9%。当倍率为10C时,包覆样品的放电比容量可达58.29mA·h/g,而未包覆仅为15.27mA·h/g。包覆5%LiAlO2的Li_(1.5)Ni_(0.25)Mn_(0.75)O_(2.5)正极材料具有最小的电荷转移阻抗。  相似文献   

6.
为了提高LiNi1/3Co1/3Mn1/3O2的电化学性能,采用非均匀成核法在球形LiNi1/3Co1/3Mn1/3O2表面包敷Al2O3。采用SEM及电化学性能测试对所制备材料的形貌和电化学性能进行表征。研究结果表明:球形LiNi1/3Co1/3Mn1/3O2颗粒由粒径为500~600 nm的一次粒子团聚而成,包敷后的球形LiNi1/3Co1/3Mn1/3O2表面形成了致密的无定形Al2O3包敷层;包覆Al2O3能明显抑制LiNi1/3Co1/3Mn1/3O2在循环过程中的氧化/还原峰电流的衰减,随着Al2O3包敷量的增加,材料的氧化/还原峰的峰电流减小,适量地包敷Al2O3可有效提高材料的可逆性;当Al2O3的包敷量为0.5%时,材料表现出优异的电化学性能,在2.7~4.6 V高电压和1C倍率条件下,材料的首次放电容量为172(mA.h)/g,50次循环后材料的容量保持率仍有93%,而没有包敷的LiNi1/3Co1/3Mn1/3O2容量略低,首次放电容量为170(mA.h)/g,而且容量衰减较快,容量保持率仅为84%。此外,包敷处理还可以有效提高LiNi1/3Co1/3Mn1/3O2材料在电解液中的热稳定性,以包敷材料所制备的电池其高温储存性能明显提高。  相似文献   

7.
采用钛酸丁酯溶胶凝胶法制备一系列不同Ti/Al摩尔比的Al2O3-Ti O2复合载体,借助TG-DTG、XRD、FT-IR、SEM-EDS、BET等手段对载体进行表征.研究表明,钛酸丁酯的浓度直接影响壳层Ti O2的均匀性以及团聚情况.Ti/Al的合适摩尔比例为0.02~0.04,此时包覆层比较均匀.随着钛酸丁酯浓度的增加,Al2O3-Ti O2比表面积、孔容逐渐下降,可能由于加入低表面积的Ti O2,阻塞了Al2O3孔道.当p H范围为1~2,溶胶稳定透明,载体比表面积较大,约为199 m2·g-1.  相似文献   

8.
将共沉淀法制得的碳酸盐前躯体Mn_(0.75)Ni_(0.25)CO_3与Li_2CO_3以及不同量的纳米TiO_2均匀混合,并在900℃下烧结10 h得到Li[Li_(0.2)Ni_(0.2)Mn_(0.6-x)Ti_x]O2(x=0.00,0.01,0.02,0.05,0.10)正极材料,ICP(感应耦合等离子体)分析表明制备的材料组分基本符合最初的设计.通过X射线衍射(XRD)和扫描电子显微镜(SEM)表征发现,掺杂量达到一定程度时会改变基体材料的结构并对微观颗粒起到分散作用.电化学测试结果表明:Ti掺杂量为0.02的材料具有最佳的电化学性能:0.1C倍率下循环30次时量没有任何衰减;其在各倍率下的放电比容量较未掺杂材料均有7~13 m Ah/g的提升;0.1C倍率下30次循环的中值电压衰减为0.08 m V.EIS(电化学阻抗谱)测试结果表明Ti掺杂量为0.02的材料性能的提高可能来自于Ti掺杂对材料结构稳定性的改善.  相似文献   

9.
采用共沉淀的方法将含有一定比例的镍、钴、锰的醋酸盐溶液均匀混合,然后加入适量的沉淀剂Na_2CO_3制备前驱体Mn_(0.466)Ni_(0.2)Co_(0.2)CO_3,与不同锂源(Li_2CO_3、LiOH)混合煅烧得到富锂锰基Li_(1.133)Mn_(0.466)Ni_(0.2)Co_(0.2)O_2正极材料.采用XRD和SEM分别对制备的(1.133)Mn_(0.466)Ni_(0.2)Co_(0.2)O_22的结构和表面形貌进行表征,采用恒电流充放电和循环伏安法对制备的(1.133)Mn_(0.466)Ni_(0.2)Co_(0.2)O_22的电化学性能进行测试.结果表明,以Li OH为锂源合成的样品在0.1C(1C=250 m A/g)倍率下首次充电比容量和放电比容量分别为330.1 m Ah/g和218.6 m Ah/g,首次库仑效率为66.23%,在1C倍率内表现为优秀的稳定循环比容量特性,但是在2C以及2C以上高倍率循环稳定性不及以Li_2CO_3为锂源合成样品的性能.  相似文献   

10.
利用Al_2O_3/TiH_2包覆颗粒制备泡沫铝   总被引:1,自引:0,他引:1  
根据非均相沉淀包裹原理 ,采用铝无机盐溶液制备氧化铝前躯体包覆技术 ,研究了Al2 O3 /TiH2 包覆粉体的制备方法 .通过扫描电镜 (SEM )对Al2 O3 /TiH2 包覆颗粒分析 ,及其释氢性能的测试 ,结果表明 :氧化铝前躯体煅烧后的包覆层均匀、致密的包覆在TiH2 颗粒的表面 ,该包覆层对TiH2 的释氢行为有明显的延迟作用 .应用这种Al2 O3 /TiH2 包覆粉体作制备泡沫金属的发泡剂可显著优化其工艺性能 ,实现可控多孔泡沫金属的生产 .  相似文献   

11.
研究了以快离子导体Li_(0.5)La_(0.5)TiO_3(LLTO)包覆的LiFePO_4正极材料的锂离子电池的电化学性能。采用溶剂热法制备锂电池正极材料LiFePO_4,再采用溶胶凝胶法制备的LLTO粉体对LiFePO_4进行包覆,包覆量为LiFePO_4质量分数的1%~4%.通过进行充放电测试、交流阻抗测试及循环伏安测试,研究了不同包覆量对电池的充放电比容量、循环性能及可逆性的影响。发现当LLTO含量为3 wt%,2 C、5 C时,充放电时相对于没有包覆LLTO的电池正极材料的比容量分别提高29.7%、31.6%,30次循环之后,容量损失率减小4.13%,循环伏安曲线上氧化还原峰之间的电位差仅为0.117 V,以3 wt%的LLTO包覆改性LiFePO_4显著提高了电池的电化学性能。  相似文献   

12.
研究Mo离子注入Al_2O_3表面机械性能的变化及产生变化的原因,结果表明,Mo离子的注入,在Al_2O_3表面产生辐射损伤,使表面残余应力、表面硬度及断裂韧性提高;注入剂量D>1×10 ̄17cm ̄-2时,随着离子注入剂量增加,表层开始非晶化,导致表面残余应力及硬度下降,而断裂韧性仍继续得到改善。  相似文献   

13.
对Me2+(Me=Ni,Co,Mn)-NH3-OH--H2O共沉淀反应体系进行了热力学分析,采用共沉淀法合成了LiNi1/3Co1/3Mn1/3O2正极材料前驱体Ni1/3Co1/3Mn1/3(OH)2,研究了pH值和氨水浓度[N]对前驱体振实密度的影响.热力学分析表明:以氢氧化钠为沉淀剂、氨水为络合剂,采用共沉淀法合成前驱体的最佳pH值为11,最佳[N]为0.1~0.5mol/L;在此条件下,金属阳离子Ni2+、Co2+和Mn2+的损失最小,分别小于1×10-3、1×10-3和1×10-6mol/L.在pH=11、[N]=0.24mol/L条件下,所合成的前驱体中Ni、Co、Mn的摩尔比为0.324∶0.349∶0.327,与理论设计值1∶1∶1非常接近,其振实密度高达1.32g/cm3.  相似文献   

14.
采用溶胶-凝胶的方法低温制备石榴石结构的固体电解质Li5La3Ta2O12,并用其包覆Li Mn2O4来改善材料的电化学性能。通过XRD,SEM和TEM等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安、交流阻抗等测试分析材料的电化学性能。研究结果表明:Li5La3Ta2O12包覆的Li Mn2O4材料与未包覆的材料相比,其电化学性能得到明显改善,经过150次循环后包覆材料的放电比容量保持率为92%,在高倍率10C(C为倍率)下包覆材料放电比容量为61.2 m A·h/g,而未包覆材料放电比容量仅为40.7 m A·h/g;包覆Li5La3Ta2O12后,Li Mn2O4的阻抗明显减小,大幅度提高了其循环性能和倍率性能。  相似文献   

15.
应用X射线衍射,选区电子衍射和同步X射线衍射等方法,对锂离子电池正极材料Li[Ni1/3Li1/9Mn5/9]O2的结构和充放电行为进行了研究.结果表明Li[Ni1/3Li1/9Mn5/9]O2可标定为单相α-NaFeO2,并具有3ahex.×3ahex.×3chex.超结构特征.电池充电时,伴随锂离子的脱出,相邻氧原子层间的静电斥力逐渐增大,当电压为3.8V时应力达到最大.接近4.6V时,晶胞常数c急剧下降,绝大多数Li 从材料的锂层拔出,Ni2 发生氧化.4.6~4.8V之间c增大,a变化很小,说明过渡金属层中的Li 拔出,而过渡金属离子的氧化状态未改变.  相似文献   

16.
采用低温熔盐法合成了锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2,并就低温熔盐0.62xLi NO3-0.38xLi OH-(1-x)CH3COOLi.2 H2O的具体比例、焙烧温度和焙烧时间对材料的影响进行了对比研究.XRD结果表明以x=0.6的低温共熔盐,经3阶段温度烧结(200℃,3 h;600℃,制备的样品的α-NaFeO2层状结构发育的较为完备.SEM扫描显示材料是由许多片状晶体构成的球形颗粒.材料在2.8~4.3 V范围内充放电,倍率为0.2 C时,首次放电比容量为173.6 mA.h.g-1,循环20次后容量保留97.4%;倍率为1 C时,首放126.0 mA.h.g-1,循环20次后容量保留94.1%.  相似文献   

17.
采用低热固相反应法制备锂离子电池层状正极材料LiNi1/3Co1/3Mn1/3O2,考察制坯、回火温度和回火时间对合成产物电化学性能的影响。用X射线衍射分析(XRD)和电化学性能测试,对LiNi1/3Co1/3Mn1/3O2进行分析。结果表明:预烧后需要制坯,最佳回火温度为600℃,最佳回火时间为2 h;最佳工艺条件下制备的样品首次放电比容量为150.3 mAh.g-1,30次循环后仍大于130 mAh.g-1。  相似文献   

18.
从理论上对铝热剂燃烧合成复相陶瓷Al2O3-TiC和Al2O3-TiB2的绝热温度及产物中Al2O3的熔化率进行了研究.随着预热温度的升高或稀释剂含量的降低,反应体系的绝热温度升高,但在2303K处均出现一个平台,其原因是Al2O3的熔化率不固定,在0~1之间变化.随预热温度的升高,燃烧反应能够自我维持的临界稀释剂的添加量也增多.  相似文献   

19.
通过在不同的氧分压条件下退火锰钴镍三元合金薄膜,成功制备出Mn_(1.56)Co_(0.96)Ni_(0.48)O_(4±δ)(MCN)尖晶石薄膜.详细探究了氧的非化学计量对MCN薄膜性能的影响.当退火氧分压从10 kPa增加至90 kPa时,MCN薄膜的结晶度获得提高;薄膜表面的吸附氧由10 kPa时的61.6%减少至90 kPa时的29.2%;同时,室温电阻率由10 kPa时的183.0 MΩ迅速下降至90 kPa时的6.9 MΩ.这表明MCN薄膜中氧化学计量对薄膜的电学性能有至关重要的作用. MCN薄膜的光吸收表明Mn的阳离子浓度随退火过程中氧分压的增加而相应提高.  相似文献   

20.
为探讨Ca的掺杂对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料结构和电性能的影响,以草酸为沉淀剂,以不同含量Ca对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2进行掺杂改性,并通过X射线衍射(XRD)对产品进行表征,探讨了不同Ca含量样品的电化学性能.结果表明:大量Ca掺杂生成明显Ca O杂相,而少量Ca掺杂则能顺利进入材料晶格之中.随着Ca掺入,晶体类型不变,但c轴略收缩,形成更紧密的结构.充放电显示Ca在低倍率(2.5~4.3 V,0.5 C)时,能一定程度提高材料的循环性能;但在高倍率(2.5~4.3 V,5 C)时,能明显提高容量和循环性能.充放电曲线同时显示未掺杂的材料高倍率下极化严重,放电平台严重降低;而Ca掺杂的材料极化状况则不明显,说明Ca掺杂能抑制极化并提高电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号