共查询到20条相似文献,搜索用时 46 毫秒
1.
为了对企业经济效益做出客观准确的评价,本文提出支持向量机的经济效益综合评价。支持向量机是基于结构风险最小化原理的一种学习技术,是一种具有很好泛化能力的评价工具。利用支持向量机对经济效益进行评价,以改善传统评价方法结果的不合理性。试验结果表明支持向量机的评价结果更符合实际,结果更加科学合理。并与人工神经网络结果进行比较,充分体现了该方法的优越性。 相似文献
2.
基于支持向量机的教学质量评价研究 总被引:1,自引:0,他引:1
支持向量机是一种新的机器学习算法,由于出色的学习性能,以及在小样本识别等许多方面有其独特的优势,现已应用在许多领域.目前,高校对教学质量越发重视,如何客观、准确、方便地评价教学质量是一个值得研究的课题.结合目前教学质最评价研究现状,提出了一个基于SVM的评价模型,经检验该模型能够获得较为理想的评价结果. 相似文献
3.
为了合理地对沥青路面性能进行综合评价,针对传统模型的不足,提出了支持向量机(SVM)路面性能综合评价模型、沥青路面性能训练集及训练标签的确定方法。同时,分别采用交叉验证(CV)、粒子群算法(PSO)、遗传算法(GA)3种优化模型对影响模型精度关键的惩罚参数C与核函数参数g进行寻优,其准确率分别为99.60%,96.67%,94.77%,可见交叉验证寻优所得到的最佳参数分类精确率最高。最后以广东省某高速公路23个养护路段为例,分别使用支持向量机模型与《公路技术状况评定标准》对路面性能进行综合评价。结果表明,使用本模型所得到的评价结果更符合实际。 相似文献
4.
提出了采用模糊有向图支持向量机(FDGSVM)对基于输出的多语言语音样本进行语音质量评价的一种新方法.将多个可进行两类分类的模糊支持向量机组织成具有惟一根节点的有向图结构,得到多类分类器FDGSVM;提取待测语音信号的Mel倒谱系数并将其作为特征向量,再通过FDGSVM将特征向量映射到非线性划分的主观平均意见评分(MOS)区间,映射值即为输出的语音质量的客观评价结果.实验结果表明,所提算法获得的评测结果与主观MOS评价之间的相关度,在闭集测试时可达0.91,在开集测试时可达0.88. 相似文献
5.
应用支持向量机算法对湖南省靖州县的滑坡易发性进行评价.首先,通过实地调查、卫片判译及滑坡历史记录,共发现滑坡102处及非滑坡点100处,随机用70%数据来训练模型,30%数据来验证模型;其次,选取坡度、坡向、高度、河流距离、断层距离、公路距离、土地利用和人类活动强度8个地质灾害影响因子作为地质灾害易发性评价指标;然后,... 相似文献
6.
为了解决当前教学质量评价方式和结果的科学性可靠性不高的问题,提出了一种证据理论和支持向量机相融合的教学质量评价模型(DS-SVM).从信息融合的思想出发,首先构建评价指标体系,并采用支持向量机分别建立基于学生、同行、督导团的教学质量评价模型,然后利用支持向量机输出确定各模型的信度函数值,最后通过DS证据理论融合各信度函数值得到教学质量评价结果.仿真试验结果表明该教学质量评价模型的输出值与真实值间吻合度高,评价效果较好. 相似文献
7.
基于支持向量机的武器装备研制项目风险评价方法 总被引:3,自引:0,他引:3
李勘 《上海交通大学学报》2008,42(11):1851-1854
针对武器装备研制项目风险评价方法在实际应用中存在的问题,对支持向量机在武器装备研制项目风险评价中应用的可行性进行了分析,提出了基于支持向量机的武器装备风险评价模型.应用收集相关项目的数据资料进行了实证研究,并与神经网络和模糊综合评价法进行了比较分析.结果表明,基于支持向量机的评价模型具有良好的自学习性和特征提取能力,可为武器装备研制项目风险评价提供有益的参考. 相似文献
8.
基于层次型支持向量机的人脸检测 总被引:25,自引:0,他引:25
复杂背景中的人脸检测可广泛应用于人脸识别、人机交互等方面。但目前大部分人脸检测方法中存在分类器训练困难和检测计算量大等问题。提出了一种基于层次型支持向量机的正面直立人脸检测方法,在这两方面作了改进。这种结构的分类器由一个线性支持向量机组合和一个非线性支持向量机组成,由前者在保证检测率的情况下快速排除掉图像中绝大部分非人脸区域,后者对人脸候选区域进行进一步确认。在卡内基梅隆CMU等数据库上的实验证明了这种方法不仅具有较高的检测率和较低的误检率,而且具有较小的计算量。 相似文献
9.
10.
对供应商的评价是企业供应中的首要问题。本文在建立供应关系数据仓库的基础上,挖掘和优化供应商评价指标体系。应用“温度计,洋葱头”算法建立供应商评价的隶属函数,以定义供应商评价的目标变量——供应商评价指数,和建立挖掘供应商评价的支持向量机模型。最后介绍了一个实例。 相似文献
11.
YUAN Lifeng ZHANG Youshui 《武汉大学学报:自然科学英文版》2006,11(4):897-900
Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length ratio of sediment supplement are chosen as evaluation factors of debris flow hazard degree. Using support vector machine (SVM) theory, we selected 259 basic data of 37 debris flow channels in Yunnan Province as learning samples in this study. We create a debris flow hazard assessment model based on SVM. The model was validated though instance applications and showed encouraging results. 相似文献
12.
将支持向量机应用于岩体质量等级分类中,采用工程中适用性强的指标如岩石质量指标、完整性系数、单轴饱和抗压强度及结构面摩擦因数,作为判别因素. 选用径向基核函数进行训练,通过交叉验证确定最佳模型参数,建立了岩体质量分级模型. 该模型采用成对分类方法构建多类分类模型,与已有文献采用一对多分类法构建支持向量机多类分类模型相比,不可分区域减少很多,即模型分类精度提高显著. 将该模型应用于工程实例,结果表明预测结果与工程勘测结果完全吻合,证明了支持向量机岩体质量分级方法的有效性. 相似文献
13.
支持向量机(Support Vector Machines简称SVMs)是基于统计学习理论的一种新的模式识别技术,它不仅结构简单,而且技术性能尤其是泛化能力明显提高。介绍了支持向量机为理论基础的通信信号调制识别方法。计算机仿真结果证实此方法的可行性。 相似文献
14.
15.
基于支持向量机的图像分类 总被引:2,自引:1,他引:2
介绍了支持向量机(SVM)的基本原理,并将它应用于图像分类.提取多种视觉特征作为SVM的输入向量,比较单一视觉特征和综合视觉特征作为SVM输入向量时的分类性能.还比较了多项式核和高斯径向基核的分类效果.实验结果表明,混合特征明显优于单一视觉特征,高斯径向基核优于多项式核. 相似文献
16.
提出一种基于多核加权支持向量机的水质预测方法.核函数及其参数选择与数据分布的情况密切相关,采用单一的核函数应对水资源质量评价指标的整个数据分布难以达到很好的预测结果.采用多核加权学习的核函数避免了核函数设计的盲目性和局部最优等非线性优化问题.实例表明,该方法的预测结果是合理可行的,且与以往同类预测方法相比,有着更为客观... 相似文献
17.
为了改善在低信噪比、小快拍、色噪声环境下盖氏圆准则信源数估计算法的估计性能,提出了基于支撑矢量机(SVM)的信源数估计算法.基于支撑矢量机的信源数估计算法应用天线阵列接收数据协方差矩阵经特征值分解后,噪声的特征矢量与天线阵列的阵列流型正交的特性,通过盖氏圆算法提取信号和噪声的分类特征,再构造和训练两类分类矢量机,将天线... 相似文献
18.
标准的单值支持向量(One-class SVM)机不能对含有不完全信息的输入样本进行学习分类.为此该文提出用区间数来对不完全输入信息进行描述,将不完全的信息输入扩展为区间向量形式,引入区间运算来取代原来分类函数中的运算,从而根据区间运算结果来对信息不完全的模式输入进行分类.使用该方法,在分类过程中能够充分利用区间表示的先验知识,同时也能够减少该过程中输入模式中的属性(特征)度量代价,理论分析和实验结果均表明该方法能最大程度地保证分类结果的一致性,是有效和可行的. 相似文献
19.
基于支持向量机的模式识别方法 总被引:4,自引:0,他引:4
介绍了由Vapnik等人提出的统计学习理论和由此发展的支持向量机,分析了其应用前景和研究方向,两个算例表明,在模式识别领域中,采用支持向量机这一新方法,具有其他传统方法不可比拟的优势。 相似文献
20.
为了准确评价客户潜在信用风险,提出了偏最小二乘支持向量机组合评价模型.首先使用偏最小二乘能降低变量间的相关性,支持向量机可用于建立评估模型,然后采用相对误差频率分布作为新的指标评价模型,最后,与常见的评分模型在信用卡数据集上进行了对比.结果表明,PLS-SVM评价模型在有效性、稳定性以及准确性方面均有更好的表现. 相似文献