首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that the entry of the malaria parasite into the red blood cell requires the presence of ATP in the host cell cytoplasm. In red blood cell ghosts that contain no ATP the receptor on the extracellular surface remains in place and parasites will bind to the membrane, but will not enter. ATP is thus necessary for one of the steps in the invasion sequence that follows recognition and attachment. The process of entry appears to involve the active participation of the host cell membrane cytoskeleton. We have suggested that the function of the intracellular ATP may be to regulate phosphorylation of the cytoskeleton. We now present evidence that the activity of the membrane-associated cyclic AMP-independent kinase of the red blood cell is inseparable from invasion; the active substrate may be spectrin.  相似文献   

2.
Changes in intracellular free Ca2+ are involved in the transmembrane signalling of different cells, including lymphocytes. Since calmodulin (CaM) is a primary receptor for Ca2+ (ref. 4), it may mediate the activation of crucial enzymes after antigen-induced increases in cytosolic Ca2+. Using a biotinylated-CaM (Bio-CaM) detection procedure to identify such proteins, we found that a peptide of relative molecular mass 59,000 (59K) was the predominant soluble CaM-binding protein (CaM-BP) in T cells and B lymphocytes from murine spleen; immunoblotting experiments identified it as a subunit of the CaM-dependent phosphatase, 'calcineurin' (CN). Smaller amounts of larger CaM-BPs, thought to be cytoskeletal-binding proteins, were also detected. CaM-BPs were expressed differentially, with B lymphocytes having four times more of the CN-like protein than T lymphocytes, while in thymocytes, a 65K polypeptide was the major CaM-BP. However, limited proteolysis analysis suggested that this thymus-specific peptide may be a precursor of CN. These data suggest that Ca2+-stimulated protein dephosphorylation may be an important and highly regulated function in lymphoid cells.  相似文献   

3.
M A Ouaissi  D Afchain  A Capron  J A Grimaud 《Nature》1984,308(5957):380-382
Successful invasion of mammalian cells by pathogenic parasites is generally considered, from circumstantial evidence, to be a consequence of specific mechanisms of recognition of cell surface components--this has stimulated investigations of the biochemical characterization of such molecules. Several studied of trypanosomiasis have examined the ability of parasites to interact with mammalian cells. However, knowledge of the mammalian cell surface 'receptors' which interact with the parasite is limited. We now report that fibronectin, which is a high molecular weight glycoprotein present in blood, connective tissue and at cell surfaces, binds specifically to Trypanosoma cruzi trypomastigotes. The reaction is specific, reversible (in the presence of a 100-fold molar excess of unlabelled ligand) and of moderate affinity (Kd = 11.36 nM). Various other proteins (for example, thyroglobulin, ferritin, catalase, aldolase, human IgG and bovine serum albumin) had no significant effect on the binding of labelled ligand to the parasite surface. Addition of anti-fibronectin antibodies to the culture medium significantly inhibited the infection of rat fibroblasts (3T3 FR) by T. cruzi trypomastigotes, suggesting that cell surface fibronectin may act as a recognition site for attachment of the parasites.  相似文献   

4.
Recent studies have identified and characterized a ring-infected erythrocyte surface antigen (RESA) of the human malaria parasite Plasmodium falciparum with a relative molecular mass (Mr) of approximately 155,000 (refs 1-7). RESA is localized in the micronemes of merozoites and also the membrane of red cells infected with ring-stage parasites. It is thought to be released through the apical pore from the rhoptry at the time of merozoite invasion. Because antibodies directed against this antigen strongly inhibit parasite growth in vitro, RESA may be useful in developing a vaccine against this parasite Here we describe an immunization trial using Aotus monkeys and Escherichia coli-derived fused polypeptides corresponding to various regions of the RESA molecule. Some monkeys in all test groups, but not in the control group, were protected against overwhelming infection. Strikingly, protection correlated with antibody responses to either of two different repetitive sequences in RESA.  相似文献   

5.
D S Peterson  R A Wrightsman  J E Manning 《Nature》1986,322(6079):566-568
The parasitic protozoan Trypanosoma cruzi can establish infection in humans and other vertebrate hosts through direct penetration of host cells by trypomastigotes transmitted by the insect vector. Although the molecular processes involved in trypomastigote interiorization of vertebrate cells are unknown, several studies suggest that surface glycoproteins are involved. It is likely that the proteins involved are specific to the trypomastigote stage of the parasite, since only trypomastigotes found in both the insect vector and the vertebrate host bloodstream are capable of invading vertebrate cells. In contrast, the epimastigote stage, found exclusively in the vector, and the amastigote stage, an intracellular stage in the vertebrate host, cannot penetrate the cell directly. We have therefore concentrated our efforts on trypomastigote surface proteins and, along with others, have identified two trypomastigote-specific surface glycoproteins of relative molecular mass (Mr) 90,000 (90K) and 85,000 (85K). Antibody neutralization experiments indicate that the 85K glycoprotein is necessary for efficient interiorization of trypomastigotes in mammalian cells. Here we describe the molecular cloning of a genomic DNA fragment that encodes antigenic determinants present in the 85K trypomastigote surface antigen. The polypeptide fragment encoded by the cloned DNA is recognized by serum from a T. cruzi-infected host and is inferred by DNA sequence analysis to contain a nonapeptide unit that is tandemly repeated five times. Also, the messenger complementary to the cloned DNA fragment is present only in the trypomastigote stage of the parasite.  相似文献   

6.
Cultivation of the liver forms of Plasmodium vivax in human hepatocytes   总被引:1,自引:0,他引:1  
The blood schizogonic cycle of human malaria parasites has thus far been the most exhaustively studied phase of parasite development. However, before entering red blood cells (RBCs), the parasite undergoes its first multiplication not in blood, but in hepatic cells. These hepatic stages were the last to be discovered and only a few studies have been performed in humans and other primates. Despite recent advances, in vivo studies have limitations and other approaches such as cultures of these liver forms may be necessary to investigate their chemosensitivity and their biochemical or immunological properties. Recently, sporozoites of species of rodent malaria have been made to infect cultured cell lines or primary hepatocyte cultures. We report here that the complete cycle of the human malaria parasite Plasmodium vivax can be obtained in primary cultures of human hepatocytes up to release of merozoites able to penetrate RBCs.  相似文献   

7.
8.
Fibronectin receptor structures in the VLA family of heterodimers   总被引:5,自引:0,他引:5  
Y Takada  C Huang  M E Hemler 《Nature》1987,326(6113):607-609
Multiple cell surface proteins of relative molecular mass 115,000-155,000 (Mr 115K-155K) have been implicated as receptors mediating adhesion to extracellular matrix proteins. But the organization and relatedness of these peptides has remained unclear. In separate studies, the 'very late antigens' VLA-1 (Mr 210K/130K) and VLA-2 (Mr 160K/130K) were initially characterized as surface heterodimers appearing 2-4 weeks after in vitro stimulation of human T cells. Three more VLA heterodimers have since been discovered, which, like VLA-1 and VLA-2, are each composed of unique alpha-subunits in association with a common 130K beta subunit. This paper shows that the common VLA beta-subunit is equivalent to subunits found in structures with known fibronectin and laminin receptor activity, and that VLA-3 and VLA-5 are similar or identical to these previously defined receptors for adhesion molecules. Antibody blocking studies confirmed that at least some of the widely distributed VLA proteins of previously unknown function are involved in cell adhesion to fibronectin and laminin. We suggest that the VLA family of receptors may provide cells with multiple independent substrate adhesion capabilities.  相似文献   

9.
Erythrocyte invasion by Plasmodium falciparum is central to the pathogenesis of malaria. Invasion requires a series of extracellular recognition events between erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. None of the few known receptor-ligand interactions involved are required in all parasite strains, indicating that the parasite is able to access multiple redundant invasion pathways. Here, we show that we have identified a receptor-ligand pair that is essential for erythrocyte invasion in all tested P. falciparum strains. By systematically screening a library of erythrocyte proteins, we have found that the Ok blood group antigen, basigin, is a receptor for PfRh5, a parasite ligand that is essential for blood stage growth. Erythrocyte invasion was potently inhibited by soluble basigin or by basigin knockdown, and invasion could be completely blocked using low concentrations of anti-basigin antibodies; importantly, these effects were observed across all laboratory-adapted and field strains tested. Furthermore, Ok(a-) erythrocytes, which express a basigin variant that has a weaker binding affinity for PfRh5, had reduced invasion efficiencies. Our discovery of a cross-strain dependency on a single extracellular receptor-ligand pair for erythrocyte invasion by P. falciparum provides a focus for new anti-malarial therapies.  相似文献   

10.
11.
Singh SK  Hora R  Belrhali H  Chitnis CE  Sharma A 《Nature》2006,439(7077):741-744
Molecular processes that govern pathogenic features of erythrocyte invasion and cytoadherence in malaria are reliant on Plasmodium-specific Duffy-binding-like domains (DBLs). These cysteine-rich modules recognize diverse host cell-surface receptors during pathogenesis. DBLs of parasite erythrocyte-binding proteins mediate invasion, and those from the antigenically variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) have been implicated in cytoadherence. The simian and human malarial parasites, P. knowlesi and P. vivax, invade human erythrocytes exclusively through the host DARC receptor (Duffy antigen receptor for chemokines). Here we present the crystal structure of the P. knowlesi DBL domain (Pkalpha-DBL), which binds to DARC during invasion of human erythrocytes. Pkalpha-DBL retains the overall fold observed in DBLs from P. falciparum erythrocyte-binding antigen (EBA)-175 (ref. 4). Mapping the residues that have previously been implicated in binding highlights a fairly flat but exposed site for DARC recognition in subdomain 2 of Pkalpha-DBL; this is in sharp contrast to receptor recognition by EBA-175 (ref. 4). In Pkalpha-DBL, the residues that contact DARC and the clusters of residues under immune pressure map to opposite surfaces of the DBL, and suggest a possible mechanism for immune evasion by P. vivax. Our comparative structural analysis of Pkalpha-DBL and P. falciparum EBA-175 provides a framework for the understanding of malaria parasite DBLs, and may affect the development of new prophylactic and therapeutic strategies.  相似文献   

12.
细胞凋亡是多细胞生物清除多余、损伤或有潜在危险细胞的一种主要生理机制.蛋白水解酶是细胞凋亡研究的重要对象,其中大部分工作都集中在探索caspases的功能和调控上.近年来,越来越多的证据显示一些非caspases蛋白酶如位于溶酶体中的cathepsins特别是cathepsin B(CTSB)参与细胞凋亡过程.溶酶体cathepsins既可以与caspases协同作用,也可以不依赖于caspases独立执行凋亡功能.选取人前列腺癌PC-3细胞株作为研究对象,通过检测PC-3细胞对TNFα、D-sphingosine两种凋亡诱导剂和caspases、cathepsins抑制剂的应答反应,以及细胞凋亡过程中溶酶体、线粒体的结构变化,证实了D-sphingosine引起PC-3细胞死亡的效应主要通过释放溶酶体中蛋白酶CTSB实现,CTSB和caspases均参与介导TNFα诱导的PC-3细胞凋亡过程,并且很可能在不同的凋亡信号通路中发挥作用.  相似文献   

13.
Y Rivière  V Blank  P Kourilsky  A Isra?l 《Nature》1991,350(6319):625-626
  相似文献   

14.
Aquaporins (AQPs) are membrane water channels that play pivotal roles in physiological and pathophysi- ological processes in diverse mammalian organs[1―3]. Recent studies indicated a novel role of AQPs in cell migration. Mice lacking AQP1, the endothelia…  相似文献   

15.
Group A Streptococcus tissue invasion by CD44-mediated cell signalling.   总被引:5,自引:0,他引:5  
C Cywes  M R Wessels 《Nature》2001,414(6864):648-652
Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.  相似文献   

16.
Although activated human T and B lymphocytes express both high-affinity and low-affinity membrane receptors for interleukin-2 (IL-2), the structural features that distinguish these receptors have remained unresolved. The high-affinity receptors appear to mediate IL-2 induced T cell growth and internalization of IL-2, whereas no function has yet been ascribed to the low-affinity receptors. The Tac antigen is an IL-2 binding protein of relative molecular mass 55,000 (Mr 55K) that participates in the formation of both high- and low-affinity receptors. But Tac complementary DNA transfection and membrane fusion studies have suggested that additional T-cell components are required to produce high-affinity IL-2 receptors. In this study, we report the identification of a second human IL-2 binding protein that (1) has an Mr of approximately 70K, (2) lacks reactivity with the anti-Tac antibody, (3) binds IL-2 with intermediate affinity and (4) is present on the surface of resting T cells, large granular lymphocytes (natural killer cells), and certain T and B cell lines in the absence of the Tac antigen. Chemical crosslinking of 125I-labelled IL-2 bound to high-affinity IL-2 receptors produces labelling of both the p70 protein and the Tac antigen and the anti-Tac antibody blocks the crosslink detection of both of these proteins. Expression of Tac cDNA in a T cell line expressing the p70 protein, but lacking both Tac and high-affinity receptors, results in the reconstitution of high-affinity IL-2 receptors in these cells. Together, these findings suggest that the high-affinity human IL-2 receptor may be a membrane complex composed of at least the p70 protein and Tac antigen.  相似文献   

17.
K Leung  G J Nabel 《Nature》1988,333(6175):776-778
  相似文献   

18.
Rhinoviruses belong to the picornavirus family and cause about 50% of common colds. Most rhinoviruses and some coxsackie viruses share a common receptor on human cells. The glycoprotein intercellular adhesion molecule-1 (ICAM-1) has recently been identified as the cellular receptor for the subgroup of rhinoviruses known as the major groups. ICAM-1 is a member of the immunoglobulin supergene family and is a ligand for lymphocyte function-associated antigen-1 (LFA-1); these ICAM-1/LFA-1 interactions are critical to many cell adhesion processes involved in the immunological response. Because anti-ICAM-1 antibodies can block binding of major-group rhinoviruses to cells, we considered that antagonism of virus-receptor interaction might be a way of preventing rhinovirus infection. We have constructed and purified a soluble form of the ICAM-1 molecule, which is normally membrane-bound, and demonstrated that it is a potent and specific inhibitor of rhinovirus infection.  相似文献   

19.
D P Gold  J M Puck  C L Pettey  M Cho  J Coligan  J N Woody  C Terhorst 《Nature》1986,321(6068):431-434
The antigen receptor on human T lymphocytes consists of two variable immunoglobulin-like glycoproteins, alpha and beta, which occur in association with three invariable T3 membrane proteins. In humans two of these proteins, T3-gamma and T3-delta, are glycoproteins of relative molecular mass (Mr) 25,000 (25K) and 20,000 (20K), respectively, while the third, T3-epsilon, is a 20K non-glycosylated protein. On the surface of murine T cells, a non-glycosylated protein dimer composed of 17K subunits (T3-zeta) is found associated with the T-cell receptor alpha and beta chains and the three T3-like polypeptide chains. It is generally accepted that major histocompatibility complex-restricted antigen recognition is a function of the alpha-beta heterodimer. This has led to the postulation that the proteins of the T3 complex are involved in the signal transduction that immediately follows antigen recognition via the antigen receptor. Events believed to be involved in early T-cell activation, such as rapid increases in phosphatidylinositol turnover and free intracellular calcium, can be triggered by antibodies directed against either the T3 complex or the clonotypic receptor. We have previously reported our findings on the cloning of the complementary DNA and genomic structure encoding both the human and murine 20K glycoprotein, T3-delta (refs 11-13). We now present our results on the cloning of the cDNA encoding the human 20K non-glycosylated chain, T3-epsilon.  相似文献   

20.
Membrane anchoring of proteins by a covalently attached glycosyl-phosphatidylinositol moiety has been reported in many different eukaryotic cells including parasite protozoa. The diversity of proteins in which this phospholipid attachment is found suggests that it is functionally important and perhaps also functionally pleiotropic. Studies on the Thy-1 antigen of murine lymphocytes indicate that it can facilitate the lateral mobility of membrane proteins. It can also permit the rapid and specific release of the anchored proteins from the membrane following cleavage by a phosphatidylinositol-specific phospholipase C (PI-PLC). Here we show that this type of anchoring may be involved in the regulation of an enzymatic activity. PI-PLC releases a Plasmodium falciparum membrane protein of relative molecular mass (Mr) 76K (p76) from intact merozoites or isolated schizont membranes and induces a proteolytic activity associated with its soluble form. Endogenous activation of the proteolytic activity of p76 appears to occur at the end of the schizogony and could initiate a cascade of biochemical events associated with merozoite maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号