首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
M Bjegovi?  M Randi? 《Nature》1971,230(5296):587-588
  相似文献   

3.
4.
The representation of colours in the cerebral cortex   总被引:7,自引:0,他引:7  
S Zeki 《Nature》1980,284(5755):412-418
  相似文献   

5.
6.
Synaptic contacts on axons in the cerebral cortex   总被引:2,自引:0,他引:2  
L E Westrum 《Nature》1966,210(5042):1289-1290
  相似文献   

7.
8.
The colour centre in the cerebral cortex of man   总被引:23,自引:0,他引:23  
Anatomical and physiological studies have shown that there is an area specialized for the processing of colour (area V4) in the prestriate cortex of macaque monkey brain. Earlier this century, suggestive clinical evidence for a colour centre in the brain of man was dismissed because of the association of other visual defects with the defects in colour vision. However, since the demonstration of functional specialization in the macaque cortex, the question of a colour centre in man has been reinvestigated, based on patients with similar lesions in the visual cortex. In order to study the colour centre in normal human subjects, we used the technique of positron emission tomography (PET), which measures increases in blood flow resulting from increased activity in the cerebral cortex. A comparison of the results of PET scans of subjects viewing multi-coloured and black-and-white displays has identified a region of normal human cerebral cortex specialized for colour vision.  相似文献   

9.
J W Phillis  D H York 《Nature》1967,216(5118):922-923
  相似文献   

10.
N C Schaad  M Schorderet  P J Magistretti 《Nature》1987,328(6131):637-640
We have previously shown that vasoactive intestinal peptide (VIP) and noradrenaline (NA) interact synergistically to increase cyclic AMP levels in mouse cerebral cortical slices. The pharmacological mechanism of this synergism is the potentiation by NA, through alpha 1 adrenergic receptors, of the stimulatory effect of VIP on cAMP formation. A similar interaction has been confirmed in guinea pig cerebral cortex and in discrete nuclei of the rat hypothalamus. Furthermore VIP and NA interact synergistically to depress the spontaneous activity of identified neurons in rat neocortex. At the cellular level, this synergistic interaction suggests that VIP- and NA-containing neuronal systems may converge, at least in part, on the same target cells to increase cAMP levels in the cerebral cortex. At the molecular level, the interaction may occur at various steps in signal transduction, between receptors, intramembrane transduction processes or intracellular effector mechanisms. Here we report that the alpha 1-adrenergic potentiation of the increases in cAMP elicited by VIP involves the formation of arachidonic acid metabolites and is mimicked by prostglandins F2 alpha and E2.  相似文献   

11.
P Davies  R Katzman  R D Terry 《Nature》1980,288(5788):279-280
Both Alzheimer's disease and senile dementia of the Alzheimer type (AD/SDAT) are progressive dementias characterized neuropathologically by the presence in the cerebral cortex of numerous neurofibrillary tangles and neuritic plaques. We use the abbreviation AD/SDAT to denote all such cases, irrespective of age of onset. Studies of neurotransmitter-related parameters in autopsied brain tissues from patients with AD/SDAT have, to date, been confined to five putative transmitter systems. Acetycholine-releasing neurones seem to be most markedly and consistently affected, as judged by the extensive reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities that have been reported. Despite numerous studies, there is no consistent evidence for the involvement of neurones releasing dopamine, noradrenaline, serotonin, or gamma-aminobutyric acid in AD/SDAT, nor for loss of muscarinic cholinergic receptors. Thus, the involvement of cholinergic neurones in AD/SDAT seems to be specific. However, the possible involvement of neurones using other chemicals as transmitters has yet to be explored. The recent recognition of the existence of so-called 'peptidergic neurones' in the mammalian brain (for review see ref. 8) and the availability of radioimmunoassay (RIA) techniques for studying these peptides, have led us to begin a systematic investigation of neuropeptides in autopsied brain tissue from cases of AD/SDAT, and from neurologically normal individuals. We report here results obtained with a RIA for somatostatin, showing that somatostatin-like immunoreactivity in the cerebral cortex is reduced in tissue from AD/SDAT patients.  相似文献   

12.
13.
14.
Spread of responses in the cerebral cortex to meaningful stimuli   总被引:1,自引:0,他引:1  
B D Burns  A C Webb 《Nature》1970,225(5231):469-470
  相似文献   

15.
A Bignami  D Dahl 《Nature》1974,252(5478):55-56
  相似文献   

16.
17.
18.
A site for the potentiation of GABA-mediated responses by benzodiazepines   总被引:6,自引:0,他引:6  
M A Simmonds 《Nature》1980,284(5756):558-560
The benzodiazepines have been well characterised as minor tranquillizers and attempts to explain their unique spectrum of activity have included suggestions that they may interact with a variety of neurotransmitter systems. Recently, a possible interaction with the gamma-aminobutyric acid (GABA) system has received most attention. Benzodiazepines potentiate the actions of both synaptically released and exogenously administered GABA on mammalian neuronal preparations but the site of action within the GABA response mechanism has not been determined. Binding studies suggest that benzodiazepines combine with highly specific sites in the neuronal membrane and that these sites have some indirect association with GABA receptors. To investigate this association further in a functioning GABA system, quantitative studies have been made in vitro on neuronal depolarisations mediated by GABA receptor activation. Evidence has already been presented that bicuculline is most probably a competitive antagonist at the GABA receptor while picrotoxin acts as an antagonist at a separate site. Here flurazepam is shown to attenuate preferentially the action of picrotoxin rather than bicuculline and a model is suggested for the site of action of these drugs within the GABA response mechanism.  相似文献   

19.
Ultrastructure of synaptic vesicle formation in cerebral cortex   总被引:2,自引:0,他引:2  
P T Turner  A B Harris 《Nature》1973,242(5392):57-59
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号