首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LDL-receptor-related proteins in Wnt signal transduction   总被引:58,自引:0,他引:58  
Tamai K  Semenov M  Kato Y  Spokony R  Liu C  Katsuyama Y  Hess F  Saint-Jeannet JP  He X 《Nature》2000,407(6803):530-535
The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors, but how Fz proteins transduce signalling is not understood. In Drosophila, arrow phenocopies the wingless (DWnt-1) phenotype, and encodes a transmembrane protein that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12-15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt-Fz, but not by Dishevelled or beta-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.  相似文献   

2.
The Wnt family of secreted molecules functions in cell-fate determination and morphogenesis during development in both vertebrates and invertebrates (reviewed in ref. 1). Drosophila Wingless is a founding member of this family, and many components of its signal transduction cascade have been identified, including the Frizzled class of receptor. But the mechanism by which the Wingless signal is received and transduced across the membrane is not completely understood. Here we describe a gene that is necessary for all Wingless signalling events in Drosophila. We show that arrow gene function is essential in cells receiving Wingless input and that it acts upstream of Dishevelled. arrow encodes a single-pass transmembrane protein, indicating that it may be part of a receptor complex with Frizzled class proteins. Arrow is a low-density lipoprotein (LDL)-receptor-related protein (LRP), strikingly homologous to murine and human LRP5 and LRP6. Thus, our data suggests a new and conserved function for this LRP subfamily in Wingless/Wnt signal reception.  相似文献   

3.
Mao B  Wu W  Davidson G  Marhold J  Li M  Mechler BM  Delius H  Hoppe D  Stannek P  Walter C  Glinka A  Niehrs C 《Nature》2002,417(6889):664-667
The Wnt family of secreted glycoproteins mediate cell cell interactions during cell growth and differentiation in both embryos and adults. Canonical Wnt signalling by way of the beta-catenin pathway is transduced by two receptor families. Frizzled proteins and lipoprotein-receptor-related proteins 5 and 6 (LRP5/6) bind Wnts and transmit their signal by stabilizing intracellular beta-catenin. Wnt/beta-catenin signalling is inhibited by the secreted protein Dickkopf1 (Dkk1), a member of a multigene family, which induces head formation in amphibian embryos. Dkk1 has been shown to inhibit Wnt signalling by binding to and antagonizing LRP5/6. Here we show that the transmembrane proteins Kremen1 and Kremen2 are high-affinity Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt/beta-catenin signalling. Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. The results indicate that Kremen1 and Kremen2 are components of a membrane complex modulating canonical Wnt signalling through LRP6 in vertebrates.  相似文献   

4.
The Wnt proteins constitute a large family of extracellular signalling molecules that are found throughout the animal kingdom and are important for a wide variety of normal and pathological developmental processes. Here we describe Wnt-inhibitory factor-1 (WIF-1), a secreted protein that binds to Wnt proteins and inhibits their activities. WIF-1 is present in fish, amphibia and mammals, and is expressed during Xenopus and zebrafish development in a complex pattern that includes paraxial presomitic mesoderm, notochord, branchial arches and neural crest derivatives. We use Xenopus embryos to show that WIF-1 overexpression affects somitogenesis (the generation of trunk mesoderm segments), in agreement with its normal expression in paraxial mesoderm. In vitro, WIF-1 binds to Drosophila Wingless and Xenopus Wnt8 produced by Drosophila S2 cells. Together with earlier results obtained with the secreted Frizzled-related proteins, our results indicate that Wnt proteins interact with structurally diverse extracellular inhibitors, presumably to fine-tune the spatial and temporal patterns of Wnt activity.  相似文献   

5.
R Winklbauer  A Medina  R K Swain  H Steinbeisser 《Nature》2001,413(6858):856-860
Cell signalling through Frizzled receptors has evolved to considerable complexity within the metazoans. The Frizzled-dependent signalling cascade comprises several branches, whose differential activation depends on specific Wnt ligands, Frizzled receptor isoforms and the cellular context. In Xenopus laevis embryos, the canonical beta-catenin pathway contributes to the establishment of the dorsal-ventral axis. A different branch, referred to as the planar cell polarity pathway, is essential for cell polarization during elongation of the axial mesoderm by convergent extension. Here we demonstrate that a third branch of the cascade is independent of Dishevelled function and involves signalling through trimeric G proteins and protein kinase C (PKC). During gastrulation, Frizzled-7 (Fz7)-dependent PKC signalling controls cell-sorting behaviour in the mesoderm. Loss of zygotic Fz7 function results in the inability of involuted anterior mesoderm to separate from the ectoderm, which leads to severe gastrulation defects. This result provides a developmentally relevant in vivo function for the Fz/PKC pathway in vertebrates.  相似文献   

6.
Insulin-like growth-factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the actions of IGFBPs have been reported to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. Here we report a previously unknown function for IGFBP-4 as a cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation in vitro, and knockdown of Igfbp4 attenuated cardiomyogenesis both in vitro and in vivo. The cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signalling. IGFBP-4 physically interacted with a Wnt receptor, Frizzled 8 (Frz8), and a Wnt co-receptor, low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Although IGF-independent, the cardiogenic effect of IGFBP-4 was attenuated by IGFs through IGFBP-4 sequestration. IGFBP-4 is therefore an inhibitor of the canonical Wnt signalling required for cardiogenesis and provides a molecular link between IGF signalling and Wnt signalling.  相似文献   

7.
An LDL-receptor-related protein mediates Wnt signalling in mice   总被引:36,自引:0,他引:36  
Pinson KI  Brennan J  Monkley S  Avery BJ  Skarnes WC 《Nature》2000,407(6803):535-538
Wnt genes comprise a large family of secreted polypeptides that are expressed in spatially and tissue-restricted patterns during vertebrate embryonic development. Mutational analysis in mice has shown the importance of Wnts in controlling diverse developmental processes such as patterning of the body axis, central nervous system and limbs, and the regulation of inductive events during organogenesis. Although many components of the Wnt signalling pathway have been identified, little is known about how Wnts and their cognate Frizzled receptors signal to downstream effector molecules. Here we present evidence that a new member of the low-density lipoprotein (LDL)-receptor-related protein family, LRP6 (ref. 3), is critical for Wnt signalling in mice. Embryos homozygous for an insertion mutation in the LRP6 gene exhibit developmental defects that are a striking composite of those caused by mutations in individual Wnt genes. Furthermore, we show a genetic enhancement of a Wnt mutant phenotype in mice lacking one functional copy of LRP6. Together, our results support a broad role for LRP6 in the transduction of several Wnt signals in mammals.  相似文献   

8.
LDL-receptor-related protein 6 is a receptor for Dickkopf proteins   总被引:42,自引:0,他引:42  
Mao B  Wu W  Li Y  Hoppe D  Stannek P  Glinka A  Niehrs C 《Nature》2001,411(6835):321-325
Wnt glycoproteins have been implicated in diverse processes during embryonic patterning in metazoa. They signal through frizzled-type seven-transmembrane-domain receptors to stabilize beta-catenin. Wnt signalling is antagonized by the extracellular Wnt inhibitor dickkopf1 (dkk1), which is a member of a multigene family. dkk1 was initially identified as a head inducer in Xenopus embryos but the mechanism by which it blocks Wnt signalling is unknown. LDL-receptor-related protein 6 (LRP6) is required during Wnt/beta-catenin signalling in Drosophila, Xenopus and mouse, possibly acting as a co-receptor for Wnt. Here we show that LRP6 (ref. 7) is a specific, high-affinity receptor for Dkk1 and Dkk2. Dkk1 blocks LRP6-mediated Wnt/beta-catenin signalling by interacting with domains that are distinct from those required for Wnt/Frizzled interaction. dkk1 and LRP6 interact antagonistically during embryonic head induction in Xenopus where LRP6 promotes the posteriorizing role of Wnt/beta-catenin signalling. Thus, DKKs inhibit Wnt co-receptor function, exemplifying the modulation of LRP signalling by antagonists.  相似文献   

9.
Wnt proteins are lipid-modified and can act as stem cell growth factors   总被引:93,自引:0,他引:93  
Wnt signalling is involved in numerous events in animal development, including the proliferation of stem cells and the specification of the neural crest. Wnt proteins are potentially important reagents in expanding specific cell types, but in contrast to other developmental signalling molecules such as hedgehog proteins and the bone morphogenetic proteins, Wnt proteins have never been isolated in an active form. Although Wnt proteins are secreted from cells, secretion is usually inefficient and previous attempts to characterize Wnt proteins have been hampered by their high degree of insolubility. Here we have isolated active Wnt molecules, including the product of the mouse Wnt3a gene. By mass spectrometry, we found the proteins to be palmitoylated on a conserved cysteine. Enzymatic removal of the palmitate or site-directed and natural mutations of the modified cysteine result in loss of activity, and indicate that the lipid is important for signalling. The purified Wnt3a protein induces self-renewal of haematopoietic stem cells, signifying its potential use in tissue engineering.  相似文献   

10.
Dollar GL  Weber U  Mlodzik M  Sokol SY 《Nature》2005,437(7063):1376-1380
The establishment of polarity in many cell types depends on Lgl, the tumour suppressor product of lethal giant larvae, which is involved in basolateral protein targeting. The conserved complex of Par3, Par6 and atypical protein kinase C phosphorylates and inactivates Lgl at the apical surface; however, the signalling mechanisms that coordinate cell polarization in development are not well defined. Here we show that a vertebrate homologue of Lgl associates with Dishevelled, an essential mediator of Wnt signalling, and that Dishevelled regulates the localization of Lgl in Xenopus ectoderm and Drosophila follicular epithelium. We show that both Lgl and Dsh are required for normal apical-basal polarity of Xenopus ectodermal cells. In addition, we show that the Wnt receptor Frizzled 8, but not Frizzled 7, causes Lgl to dissociate from the cortex with the concomitant loss of its activity in vivo. These findings suggest a molecular basis for the regulation of cell polarity by Frizzled and Dishevelled.  相似文献   

11.
Embryological and genetic evidence indicates that the vertebrate head is induced by a different set of signals from those that organize trunk-tail development. The gene cerberus encodes a secreted protein that is expressed in anterior endoderm and has the unique property of inducing ectopic heads in the absence of trunk structures. Here we show that the cerberus protein functions as a multivalent growth-factor antagonist in the extracellular space: it binds to Nodal, BMP and Wnt proteins via independent sites. The expression of cerberus during gastrulation is activated by earlier nodal-related signals in endoderm and by Spemann-organizer factors that repress signalling by BMP and Wnt. In order for the head territory to form, we propose that signals involved in trunk development, such as those involving BMP, Wnt and Nodal proteins, must be inhibited in rostral regions.  相似文献   

12.
X Lin  N Perrimon 《Nature》1999,400(6741):281-284
The Drosophila wingless gene (wg) encodes a protein of the Wnt family and is a critical regulator in many developmental processes. Biochemical studies have indicated that heparan sulphate proteoglycans, consisting of a protein core to which heparan sulphate glycosaminoglycans are attached, are important for Wg function. Here we show that, consistent with these findings, the Drosophila gene sulfateless (sfl), which encodes a homologue of vertebrate heparan sulphate N-deacetylase/N-sulphotransferase (an enzyme needed for the modification of heparan sulphate) is essential for Wg signalling. We have identified the product of division abnormally delayed (dally), a glycosyl-phosphatidyl inositol (GPI)-linked glypican, as a heparan sulphate proteoglycan molecule involved in Wg signalling. Our results indicate that Dally may act as a co-receptor for Wg, and that Dally, together with Drosophila Frizzled 2, modulates both short- and long-range activities of Wg.  相似文献   

13.
14.
The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues.  相似文献   

15.
16.
Panáková D  Sprong H  Marois E  Thiele C  Eaton S 《Nature》2005,435(7038):58-65
Wnt and Hedgehog family proteins are secreted signalling molecules (morphogens) that act at both long and short range to control growth and patterning during development. Both proteins are covalently modified by lipid, and the mechanism by which such hydrophobic molecules might spread over long distances is unknown. Here we show that Wingless, Hedgehog and glycophosphatidylinositol-linked proteins copurify with lipoprotein particles, and co-localize with them in the developing wing epithelium of Drosophila. In larvae with reduced lipoprotein levels, Hedgehog accumulates near its site of production, and fails to signal over its normal range. Similarly, the range of Wingless signalling is narrowed. We propose a novel function for lipoprotein particles, in which they act as vehicles for the movement of lipid-linked morphogens and glycophosphatidylinositol-linked proteins.  相似文献   

17.
18.
Wingless (Wg) is a member of the Wnt family of growth factors, secreted proteins that control proliferation and differentiation during development. Studies in Drosophila have shown that responses to Wg require cell-surface heparan sulphate, a glycosaminoglycan component of proteoglycans. These findings suggest that a cell-surface proteoglycan is a component of a Wg/Wnt receptor complex. We demonstrate here that the protein encoded by the division abnormally delayed (dally) gene is a cell-surface, heparan-sulphate-modified proteoglycan. dally partial loss-of-function mutations compromise Wg-directed events, and disruption of dally function with RNA interference produces phenotypes comparable to those found with RNA interference of wg or frizzled (fz)/Dfz2. Ectopic expression of Dally potentiates Wg signalling without altering levels of Wg and can rescue a wg partial loss-of-function mutant. We also show that dally, a regulator of Decapentaplegic (Dpp) signalling during post-embryonic development, has tissue-specific effects on Wg and Dpp signalling. Dally can therefore differentially influence signalling mediated by two growth factors, and may form a regulatory component of both Wg and Dpp receptor complexes.  相似文献   

19.
A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation   总被引:1,自引:0,他引:1  
Zeng X  Tamai K  Doble B  Li S  Huang H  Habas R  Okamura H  Woodgett J  He X 《Nature》2005,438(7069):873-877
Signalling by the Wnt family of secreted lipoproteins has essential functions in development and disease. The canonical Wnt/beta-catenin pathway requires a single-span transmembrane receptor, low-density lipoprotein (LDL)-receptor-related protein 6 (LRP6), whose phosphorylation at multiple PPPSP motifs is induced upon stimulation by Wnt and is critical for signal transduction. The kinase responsible for LRP6 phosphorylation has not been identified. Here we provide biochemical and genetic evidence for a 'dual-kinase' mechanism for LRP6 phosphorylation and activation. Glycogen synthase kinase 3 (GSK3), which is known for its inhibitory role in Wnt signalling through the promotion of beta-catenin phosphorylation and degradation, mediates the phosphorylation and activation of LRP6. We show that Wnt induces sequential phosphorylation of LRP6 by GSK3 and casein kinase 1, and this dual phosphorylation promotes the engagement of LRP6 with the scaffolding protein Axin. We show further that a membrane-associated form of GSK3, in contrast with cytosolic GSK3, stimulates Wnt signalling and Xenopus axis duplication. Our results identify two key kinases mediating Wnt co-receptor activation, reveal an unexpected and intricate logic of Wnt/beta-catenin signalling, and illustrate GSK3 as a genuine switch that dictates both on and off states of a pivotal regulatory pathway.  相似文献   

20.
Repressor activity of Headless/Tcf3 is essential for vertebrate head formation   总被引:10,自引:0,他引:10  
The vertebrate organizer can induce a complete body axis when transplanted to the ventral side of a host embryo by virtue of its distinct head and trunk inducing properties. Wingless/Wnt antagonists secreted by the organizer have been identified as head inducers. Their ectopic expression can promote head formation, whereas ectopic activation of Wnt signalling during early gastrulation blocks head formation. These observations suggest that the ability of head inducers to inhibit Wnt signalling during formation of anterior structures is what distinguishes them from trunk inducers that permit the operation of posteriorizing Wnt signals. Here we describe the zebrafish headless (hdl) mutant and show that its severe head defects are due to a mutation in T-cell factor-3 (Tcf3), a member of the Tcf/Lef family. Loss of Tcf3 function in the hdl mutant reveals that hdl represses Wnt target genes. We provide genetic evidence that a component of the Wnt signalling pathway is essential in vertebrate head formation and patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号