首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological functions of the ING family tumor suppressors   总被引:11,自引:0,他引:11  
  相似文献   

2.
Inhibitor of Growth 1 (ING1) was identified and characterized as a “candidate” tumor suppressor gene in 1996. Subsequently, four more genes, also characterized as “candidate” tumor suppressor genes, were identified by homology search: ING2, ING3, ING4, and ING5. The ING proteins are characterized by a high homology in their C-terminal domain, which contains a Nuclear Localization Sequence and a Plant HomeoDomain (PHD), which has a high affinity to Histone 3 tri-methylated on lysine 4 (H3K4Me3). The ING proteins have been involved in the control of cell growth, senescence, apoptosis, chromatin remodeling, and DNA repair. Within the ING family, ING1 and ING2 form a subgroup since they are evolutionarily and functionally close. In yeast, only one gene, Pho23, is related to ING1 and ING2 and possesses also a PHD. Recently, the ING1 and ING2 tumor suppressor status has been fully established since several studies have described the loss of ING1 and ING2 protein expression in human tumors and both ING1 and ING2 knockout mice were reported to have spontaneously developed tumors, B cell lymphomas, and soft tissue sarcomas, respectively. In this review, we will describe for the first time what is known about the ING1 and ING2 genes, proteins, their regulations in both human and mice, and their status in human tumors. Furthermore, we explore the current knowledge about identified functions involving ING1 and ING2 in tumor suppression pathways especially in the control of cell cycle and in genome stability.  相似文献   

3.
The spliceosome is a dynamic macromolecular machine that catalyzes pre-mRNA splicing through a mechanism controlled by several accessory proteins, including the Dim proteins. The Dim protein family is composed of two classes, Dim1 and Dim2, which share a common thioredoxin-like fold. They were originally identified for their role in cell cycle progression and have been found to interact with Prp6, an essential component of the spliceosome, which forms the bridge of U4/U6.U5-tri-snRNP. In spite of their biological and structural similarities, Dim1 and Dim2 proteins differ in many aspects. Dim1 bears distinctive structural motifs responsible for its interaction with other spliceosome components. Dim2 forms homodimers and contains specific domains required for its interactions with partners. This originality suggests that although both proteins are involved in pre-mRNA splicing, they are likely to be involved in different biological pathways. In the present article we review the structure and function of the Dim proteins.  相似文献   

4.
5.
Computation plays an important role in functional genomics. THEMATICS is a computational method that predicts chemical and electrostatic properties of residues in enzymes and utilizes information contained in those predictions to identify active sites. The only input required is the three-dimensional structure of the query protein. The identification of residues involved in catalysis and in recognition is discussed. The two serine proteases Kex2 from Saccharomyces cerevisiae and subtilisin from Bacillus subtilis are used as examples to illustrate how the method finds the catalytic residues for both enzymes. In addition, Kex2 is specific for dibasic sites and THEMATICS finds the recognition residues for both the S1 and S2 sites of Kex2. In contrast, no such recognition sites are found for the non-specific enzyme subtilisin. The ability to identify sites that govern recognition opens the door to better understanding of specificity and to the design of highly specific inhibitors.Received 22 July 2003; received after revision 16 September 2003; accepted 20 October 2003  相似文献   

6.
Proper brain connectivity and neuronal transmission rely on the accurate assembly of neurotransmitter receptors, cell adhesion molecules and several other scaffolding and signaling proteins at synapses. Several new exciting findings point to an important role for the neuroligin family of adhesion molecules in synapse development and function. In this review, we summarize current knowledge of the structure of neuroligins and neurexins, their potential binding partners at the synapse. We also discuss their potential involvement in several aspects of synapse development, including induction, specificity and stabilization. The implication of neuroligins in cognitive disorders such as autism and mental retardation is also discussed. Received 6 February 2006; received after revision 17 March 2006; accepted 26 April 2006  相似文献   

7.
8.
The CorA family: Structure and function revisited   总被引:1,自引:0,他引:1  
The CorA family is a group of ion transporters that mediate transport of divalent metal ions across biological membranes. Metal ions are essential elements in most cellular processes and hence the concentrations of ions in cells and organelles must be kept at appropriate levels. Impairment of these systems is implied in a number of pathological conditions. CorA proteins are abundant among the prokaryotic organisms but homologues are present in both human and yeast. The activity of CorA proteins has generally been associated with the transport of magnesium ions but the members of the CorA family can also transport other ions such as cobalt and nickel. The structure of the CorA from Thermotoga maritima, which also was the first structure of a divalent cation transporter determined, has opened the possibilities for understanding the mechanisms behind the ion transport and also corrected a number of assumptions that have been made in the past.  相似文献   

9.
10.
11.
Gene structure and function of the 2'-5'-oligoadenylate synthetase family   总被引:1,自引:0,他引:1  
2'-5'-Oligoadenylate synthetase was among the first interferon-induced antiviral enzymes to be discovered. This family of enzymes plays an important role in the mechanisms of action of interferon antiviral activity, but is also involved in other cellular processes such as apoptosis and growth control. We have reviewed the function and genomic structure of this class of at least nine proteins. By studying the recently available data in the human genome database and the human Expressed Sequence Tag database, we have been able to build a comprehensive picture of the 2'-5'-oligoadenylate synthetase gene family and its precise location on chromosome 12. Chromosomal localization as well as the intron/exon structure of all four genes has been established and an overview of the splice variant forms of the 2'-5'-oligoadenylate synthetases arising from expression of the four genes is presented. Alignments of the human 2'-5'-oligoadenylate synthetase sequences with non-human 2'-5'-oligoadenylate synthetase sequences suggest that the exon structure and several amino acid sequence motifs have been conserved during evolution.  相似文献   

12.
Thrombospondins are large secreted, multimodular, calcium-binding glycoproteins that have complex roles in mediating cellular processes. Determination of high-resolution structures of thrombospondins has revealed unique and interesting protein motifs. Here, we review this progress and discuss implications for function. By combining structures of modules from thrombospondins and related extracellular proteins it is now possible to prepare an overall model of the structure of thrombospondin-1 and thrombospondin-2 and discern features of other thrombospondins. (Part of a multi-author Review)  相似文献   

13.
Thrombospondins are large secreted, multimodular, calcium-binding glycoproteins that have complex roles in mediating cellular processes. Determination of high-resolution structures of thrombospondins has revealed unique and interesting protein motifs. Here, we review this progress and discuss implications for function. By combining structures of modules from thrombospondins and related extracellular proteins it is now possible to prepare an overall model of the structure of thrombospondin-1 and thrombospondin-2 and discern features of other thrombospondins. (Part of a multi-author Review)  相似文献   

14.
Thrombospondins: from structure to therapeutics   总被引:2,自引:0,他引:2  
Thrombospondin-1 is a secreted protein that modulates vascular cell behavior via several cell surface receptors. In vitro, nanomolar concentrations of thrombospondin-1 are required to alter endothelial and vascular smooth muscle cell adhesion, proliferation, motility, and survival. Yet, much lower levels of thrombospondin-1 are clearly functional in vivo. This discrepancy was explained with the discovery that the potency of thrombospondin-1 increases more than 100-fold in the presence of physiological levels of nitric oxide (NO). Thrombospondin-1 binding to CD47 inhibits NO signaling by preventing cGMP synthesis and activation of its target cGMP-dependent protein kinase. This potent antagonism of NO signaling allows thrombospondin-1 to acutely constrict blood vessels, accelerate platelet aggregation, and if sustained, inhibit angiogenic responses. Acute antagonism of NO signaling by thrombospondin-1 is important for hemostasis but becomes detrimental for tissue survival of ischemic injuries. New therapeutic approaches targeting thrombospondin-1 or CD47 can improve recovery from ischemic injuries and overcome a deficit in NO-responsiveness in aging. (Part of a Multi-author Review).  相似文献   

15.
Thrombospondins: from structure to therapeutics   总被引:1,自引:0,他引:1  
Thrombospondin-1 (TSP1) is a multi-domain, multi-functional glycoprotein synthesized by many cells. Matricellular TSP1 modulates cell adhesion and proliferation. TSP1 is involved in angiogenesis, inflammation, wound healing and cancer. As a major platelet protein, for a long time it was postulated to control hemostasis via platelet aggregate stabilization. However, these in vitro findings have been questioned in the absence of corroborating clinical data and of obvious hemostatic defects in TSP1 gene-deficient mice.Yet, the past few years have provided indices to implicate TSP1 in hemostasis. In clinical studies, a correlation exists between a welldefined TSP1 polymorphism and a significant risk of myocardial infarction.At the same time, recent in vivo animal model data imply TSP1 in the multimer size control of von Willebrand factor, in smooth muscle cell regulation and in vascular perfusion. These findings shed new light on the role of TSP1 in hemostasis and prothrombotic vascular pathologies. (Part of a Multi-author Review).  相似文献   

16.
Thrombospondins: from structure to therapeutics   总被引:2,自引:0,他引:2  
The thrombospondins (TSPs) are a family of five proteins that are involved in the tissue remodeling that is associated with embryonic development, wound healing, synaptogenesis, and neoplasia. These proteins mediate the interaction of normal and neoplastic cells with the extracellular matrix and surrounding tissue. In the tumor microenvironment, TSP-1 has been shown to suppress tumor growth by inhibiting angiogenesis and by activating transforming growth factor beta. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival, and through effects on vascular endothelial cell growth factor bioavailability. In addition, TSP-1 may affect tumor cell function through interaction with cell surface receptors and regulation of extracellular proteases. Whereas the role of TSP-1 in the tumor microenvironment is the best characterized, the other TSPs may have similar functions. (Part of a Multi-author Review).  相似文献   

17.
Cartilage oligomeric matrix protein, also known as thrombospondin-5 (TSP-5), is an extracellular matrix protein found primarily in cartilage and musculoskeletal tissues. TSP-5 is of interest because mutations in the gene cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED/EDM1). Both PSACH and EDM1 have a characteristic chondrocyte phenotype distinguished by giant rough endoplasmic reticulum (rER) cisternae containing TSP-5 and other extracellular matrix proteins such as type IX collagen and matrilin-3. The accumulation of proteinaceous material in the rER compromises cellular function and leads to premature chondrocyte death. Both in vitro and in vivo models have been generated with varying degrees of success to study the cellular mechanisms of the disease process. Here we review and discuss in vitro and in vivo PSACH and MED model systems and describe two transgenic mouse lines expressing human mutant TSP-5 protein. These model systems have revealed several important features of the PSACH cellular pathology: unfolded protein response activation, upregulation of apoptosis and inappropriate assembly of matrix network in the rER. Some of these models are valuable reagents that may be of use in testing therapeutic interventions. (Part of a Multiauthor Review).  相似文献   

18.
The structure and function of lysozyme   总被引:1,自引:0,他引:1  
L N Johnson 《Science progress》1966,54(215):367-385
  相似文献   

19.
20.
The recent characterization of the human insulin receptor structure and its intrinsic tyrosine kinase activity represent major advances in our understanding of the mechanism of insulin action. It is reasonable to think that the insulin-induced autophosphorylation and activation of its receptor kinase represent an important event in the action of insulin on cell metabolism and growth. The fundamental research reviewed may be followed by the discovery of molecular receptor defects in clinical syndromes of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号