首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels.  相似文献   

2.
CD24 is a glycosyl-phosphatidylinositol-anchored membrane protein that is frequently over-expressed in a variety of human carcinomas and is correlated with poor prognosis. In cancer cell lines, changes of CD24 expression can alter several cellular properties in vitro and tumor growth in vivo. However, little is known about how CD24 mediates these effects. Here we have analyzed the functional consequences of CD24 knock-down or over-expression in human cancer cell lines. Depletion of CD24 reduced cell proliferation and adhesion, enhanced apoptosis, and regulated the expression of various genes some of which were identified as STAT3 target genes. Loss of CD24 reduced STAT3 and FAK phosphorylation. Diminished STAT3 activity was confirmed by specific reporter assays. We found that reduced STAT3 activity after CD24 knock-down was accompanied by altered Src phosphorylation. Silencing of Src, similar to CD24, targeted the expression of prototype STAT3-regulated genes. Likewise, the over-expression of CD24 augmented Src-Y416 phosphorylation, the recruitment of Src into lipid rafts and the expression of STAT3-dependent target genes. An antibody to CD24 was effective in reducing tumor growth of A549 lung cancer and BxPC3 pancreatic cancer xenografts in mice. Antibody treatment affected the level of Src-phosphorylation in the tumor and altered the expression of STAT3 target genes. Our results provide evidence that CD24 regulates STAT3 and FAK activity and suggest an important role of Src in this process. Finally, the targeting of CD24 by antibodies could represent a novel route for tumor therapy.  相似文献   

3.
Cell migration requires the coordinated turnover of focal adhesions, a process that involves FAK phosphorylation. Since Src is the major kinase implicated in FAK phosphorylation, we focus here on the role of Src activation on adhesion remodelling. In astrocytoma cells, constitutively activated Src induces both FAK phosphorylation and adhesion rearrangement. To evaluate how Src controls these processes, we used a recently described Src reporter to monitor the dynamics of Src phosphorylation. Upon Src activation, focal adhesions started to disassemble while Src appeared highly expressed at newly formed membrane ruffles. Kinetic analysis of time-lapse movies showed that loss of phospho-Src at focal adhesions was time-correlated with the appearance of membrane ruffles containing phospho-Src. Moreover, FLIP analysis revealed a dynamic equilibrium of Src between focal adhesions and membrane ruffles. We conclude that upon phosphorylation, Src is directly translocated from focal adhesions to membrane ruffles, thereby promoting formation of new adhesion complexes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 21 July 2008; received after revision 10 October 2008; accepted 03 November 2008  相似文献   

4.
RIPK4 is a key player in epidermal differentiation and barrier formation. RIPK4 signaling pathways controlling keratinocyte proliferation and differentiation depend on its kinase activity leading to Dvl2, Pkp1 and IRF6 phosphorylation and NF-κB activation. However, the mechanism regulating RIPK4 activity levels remains elusive. We show that cultured keratinocytes display constitutive active phosphorylated RIPK4 while PKC signaling can trigger RIPK4 activation in various non-keratinocyte cell lines, in which RIPK4 is present in a non-phosphorylated state. Interestingly, we identified the SCFβ-TrCP ubiquitin E3 ligase complex responsible for regulating the active RIPK4 protein level. The SCFβ-TrCP complex binds to a conserved phosphodegron motif in the intermediate domain of RIPK4, subsequently leading to K48-linked ubiquitinylation and degradation. The recruitment of β-TrCP is dependent on RIPK4 activation and trans-autophosphorylation. β-TrCP knock-down resulted in RIPK4-dependent formation of actin stress fibers, cell scattering and increased cell motility, suggesting that tight control of RIPK4 activity levels is crucial to maintain cell shape and behavior in keratinocytes.  相似文献   

5.
The motif “SYDE”, incorporating the protein kinase CK2 consensus sequence (S-x-x-E) has been found to be phosphorylated at both its serine and tyrosine residues in several proteins. Of special interest is the case of cystic fibrosis Transmembrane-conductance Regulator (CFTR), where this motif is close to the residue (F508), whose deletion is the by far commonest cause of cystic fibrosis. Intriguingly, however, CFTR S511 cannot be phosphorylated by CK2 to any appreciable extent. Using a number of peptide substrates encompassing the CFTR “SYDE” site we have recently shown that: (1) failure of CK2 to phosphorylate the S511YDE motif is due to the presence of Y512; (2) CK2 readily phosphorylates S511 if Y512 is replaced by a phospho-tyrosine; (3) the Src family protein tyrosine kinase Lyn phosphorylates Y512 in a manner that is enhanced by the deletion of F508. These data, in conjunction with the recent observation that by inhibiting CK2 the degradation of F508delCFTR is reduced, lead us to hypothesize that the hierarchical phosphorylation of the motif SYDE by the concerted action of protein tyrosine kinases and CK2 is one of the mechanisms that cooperate to the premature degradation of F508delCFTR.  相似文献   

6.
Novel regulation and function of Src tyrosine kinase   总被引:4,自引:0,他引:4  
Src tyrosine kinase is a critical signal transducer that modulates a wide variety of cellular functions. Misregulation of Src leads to cell transformation and cancer. Heterotrimeric guanine-nucleotide-binding proteins (G proteins) are another group of signaling molecules that transduce signals from cell-surface receptors to generate physiological responses. Recently, it was discovered that Gαs and Gαi could directly stimulate Src family tyrosine kinase activity. This novel regulation of Src tyrosine kinase by G proteins provides insights into the adenylyl cyclase-independent signaling mechanisms involved in ligand-induced receptor desensitization, internalization and other physiological processes. Received 17 August 2001; received after revision 22 October 2001; accepted 24 October 2001  相似文献   

7.
The neuronal Cdk5 activator p35 is involved in a multitude of neuronal activities, including cytoskeletal organization. We show here that p35 directly interacts with filamentous actin (F-actin) but not with monomeric actin (G-actin). Through binding, p35 induces the formation of actin bundles and stabilizes F-actin against dilution-induced depolymerization. p35 forms intermolecular self-associations, suggesting that p35 cross-links actin filaments into bundles via its intermolecular self-association. p35 dimerization and association with F-actin occur at the N-terminal region that is absent in the calpain-cleaved product p25, indicating that such p35 properties are lost by its truncation induced under neurotoxic conditions. Using p35 phosphorylated by Cdk5 and a mutational approach, we demonstrate that the phosphorylation of p35 promotes its homodimerization and p35-induced formation of F-actin bundles. In addition, the phosphorylation regulates p35 distribution to microtubule and actin cytoskeletons. Together, these observations define a novel function for p35 in cytoskeletal regulation.  相似文献   

8.
Given the presence of Src and PTP1B within rat brain mitochondria, we have investigated whether PTP1B regulates Src activity in mitochondria as in the cytosol. Results showed that Src was stimulated by in vitro addition of ATP to mitochondria, and this stimulation was reversed by a membrane-permeable allosteric inhibitor of PTP1B and by a potent selective Src inhibitor. They also indicated a direct action of PTP1B on phosphorylated tyrosine 527 residue of Src, thus implicating a role for PTP1B in the modulation of Src activity in mitochondria. Putative Src and PTP1B substrates were identified by liquid chromatography tandem mass spectrometry and two-dimensional blue native/SDS-PAGE. Both inhibitors inhibited ADP-stimulated respirations concurrently with Src activation and complex IV activation by ATP, while having no effect or increasing the activity of the other complexes. Our analysis emphasizes the regulatory function of Src and its modulation by PTP1B on oxidative phosphorylation in mitochondria.  相似文献   

9.
The mechanisms whereby G protein-coupled receptors (GPCR) activate signalling pathways involved in mRNA translation are ill-defined, in contrast to tyrosine kinase receptors (TKR). We compared a GPCR and a TKR, both endogenously expressed, for their ability to mediate phosphorylation of 70-kDa ribosomal S6 kinase p70S6K in primary rat Sertoli cells at two developmental stages. In proliferating cells stimulated with follicle-stimulating hormone (FSH), active p70S6K was phosphorylated on T389 and T421/S424, through cAMP-dependent kinase (PKA) and phosphatidyl-inositide-3 kinase (PI3K) antagonizing actions. In FSH-stimulated differentiating cells, active p70S6K was phosphorylated solely on T389, PKA and PI3K independently enhancing its activity. At both developmental stages, insulin-induced p70S6K regulation was consistent with reported data. Therefore, TKR and GPCR trigger distinct p70S6K active conformations. p70S6K developmental regulation was formalized in a dynamic mathematical model fitting the data, which led to experimentally inaccessible predictions on p70S6K phosphorylation rate.  相似文献   

10.
The bipolar kinesin-5 motors perform essential functions in mitotic spindle dynamics. We previously demonstrated that phosphorylation of at least one of the Cdk1 sites in the catalytic domain of the Saccharomyces cerevisiae kinesin-5 Cin8 (S277, T285, S493) regulates its localization to the anaphase spindle. The contribution of these three sites to phospho-regulation of Cin8, as well as the timing of such contributions, remains unknown. Here, we examined the function and spindle localization of phospho-deficient (serine/threonine to alanine) and phospho-mimic (serine/threonine to aspartic acid) Cin8 mutants. In vitro, the three Cdk1 sites undergo phosphorylation by Clb2-Cdk1. In cells, phosphorylation of Cin8 affects two aspects of its localization to the anaphase spindle, translocation from the spindle-pole bodies (SPBs) region to spindle microtubules (MTs) and the midzone, and detachment from the mitotic spindle. We found that phosphorylation of S277 is essential for the translocation of Cin8 from SPBs to spindle MTs and the subsequent detachment from the spindle. Phosphorylation of T285 mainly affects the detachment of Cin8 from spindle MTs during anaphase, while phosphorylation at S493 affects both the translocation of Cin8 from SPBs to the spindle and detachment from the spindle. Only S493 phosphorylation affected the anaphase spindle elongation rate. We conclude that each phosphorylation site plays a unique role in regulating Cin8 functions and postulate a model in which the timing and extent of phosphorylation of the three sites orchestrates the anaphase function of Cin8.  相似文献   

11.
Cyclin-dependent kinase 1 (CDK1) is a major component of the cell cycle progression engine. Recently, several investigations provided evidence demonstrating that unscheduled CDK1 activation may also be involved in apoptosis in cancerous cells. In this article, we demonstrate that X-ray irradiation induced G1 arrest in MOLT-4 lymphocytic leukemia cells, the arrest being accompanied by reduction in the activity of CDK2, but increased CDK1 activity and cell apoptosis in the G1 phase. Interestingly, this increase in CDK1 and apoptosis by ionizing radiation was prevented by pretreatment with the CDK1 inhibitor, roscovitine, suggesting that CDK1 kinase activity is required for radiation-induced apoptotic cell death in this model system. Furthermore, cyclin B1 and CDK1 were detected co-localizing and associating in G1 phase MOLT-4 cells, with the cellular lysates from these cells revealing a genotoxic stress-induced increase in CDK1 phosphorylation (Thr-161) and dephosphorylation (Tyr-15), as analyzed by postsorting immunoprecipitation and immunoblotting. Finally, X-irradiation was found to increase Bcl-2 phosphorylation in G1 phase cells. Taken together, these novel findings suggest that CDK1 is activated by unscheduled accumulation of cyclin B1 in G1 phase cells exposed to X-ray, and that CDK1 activation, at the wrong time and in the wrong phase, may directly or indirectly trigger a Bcl-2-dependent signaling pathway leading to apoptotic cell death in MOLT-4 cells. Received 30 March 2006; received after revision 23 June 2006; accepted 24 August 2006 J. Wu and Y. Feng contributed equally to this work.  相似文献   

12.
Insulin-like growth factor I (IGF-I) is a potent stimulator of neuroblastoma cell motility. Cell motility requires lamellipodium extension at the leading edge of the cell through organized actin polymerization, and IGF-I stimulates lamellipodial elaboration in human neuroblastoma cells. Rac is a Rho GTPase that stimulates lamellipodial formation via the regulation of actin polymerization. In this study, we show that IGF-I-stimulated phosphatidylinositol 3-kinase (PI-3K) activity promotes rac activation and subsequent activation of the down- stream effectors LIM kinase and cofilin. Overexpression of wild-type LIM kinase and wild-type Xenopus ADF/cofilin (XAC) suppresses IGF-I-stimulated motility in SH-SY5Y cells, while expression of dominant negative LIM kinase and constitutively active XAC increases SH-SY5Y motility in the absence of IGF-I stimulation. These results suggest that regulation by cofilin of actin depolymerization is important in the process of neuroblastoma cell motility, and IGF-I regulates cofilin activity in part through PI-3K, rac, and LIM kinase.Received 18 October 2004; received after revision 3 December 2004; accepted 16 December 2004  相似文献   

13.
14.
The mitogen-activated protein kinase-activated protein kinase MK5 is ubiquitously expressed in vertebrates and is implicated in cell proliferation, cytoskeletal remodeling, and anxiety behavior. This makes MK5 an attractive drug target. We tested several diterpenoid alkaloids for their ability to suppress MK5 kinase activity. We identified noroxoaconitine as an ATP competitor that inhibited the catalytic activity of MK5 in vitro (IC50 = 37.5 μM; K i = 0.675 μM) and prevented PKA-induced nuclear export of MK5, a process that depends on kinase active MK5. MK5 is closely related to MK2 and MK3, and noroxoaconitine inhibited MK3- and MK5- but not MK2-mediated phosphorylation of the common substrate Hsp27. Molecular docking of noroxoaconitine into the ATP binding sites indicated that noroxoaconitine binds more strongly to MK5 than to MK3. Noroxoaconitine and derivatives may help in elucidating the precise biological functions of MK5 and may prove to have therapeutic values.  相似文献   

15.
16.
The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.  相似文献   

17.
Endothelial cells release ATP in response to fluid shear stress, which activates purinergic (P2) receptor-mediated signaling molecules including endothelial nitric oxide (eNOS), a regulator of vascular tone. While P2 receptor-mediated signaling in the vasculature is well studied, the role of P2Y2 receptors in shear stress-associated endothelial cell alignment, cytoskeletal alterations, and wound repair remains ill defined. To address these aspects, human umbilical vein endothelial cell (HUVEC) monolayers were cultured on gelatin-coated dishes and subjected to a shear stress of 1 Pa. HUVECs exposed to either P2Y2 receptor antagonists or siRNA showed impaired fluid shear stress-induced cell alignment, and actin stress fiber formation as early as 6 h. Similarly, when compared to cells expressing the P2Y2 Arg-Gly-Asp (RGD) wild-type receptors, HUVECs transiently expressing the P2Y2 Arg-Gly-Glu (RGE) mutant receptors showed reduced cell alignment and actin stress fiber formation in response to shear stress as well as to P2Y2 receptor agonists in static cultures. Additionally, we observed reduced shear stress-induced phosphorylation of focal adhesion kinase (Y397), and cofilin-1 (S3) with receptor knockdown as well as in cells expressing the P2Y2 RGE mutant receptors. Consistent with the role of P2Y2 receptors in vasodilation, receptor knockdown and overexpression of P2Y2 RGE mutant receptors reduced shear stress-induced phosphorylation of AKT (S473), and eNOS (S1177). Furthermore, in a scratched wound assay, shear stress-induced cell migration was reduced by both pharmacological inhibition and receptor knockdown. Together, our results suggest a novel role for P2Y2 receptor in shear stress-induced cytoskeletal alterations in HUVECs.  相似文献   

18.
The mammalian target of rapamycin (mTOR) complex exerts a pivotal role in protein anabolism and cell growth. Despite its importance, few studies adequately address the complexity of phosphorylation of the mTOR protein itself to enable conclusions to be drawn on the extent of kinase activation following this event. In particular, a large number of studies in the skeletal muscle biology field have measured Serine 2448 (Ser2448) phosphorylation as a proxy of mTOR kinase activity. However, the evidence to be described is that Ser2448 is not a measure of mTOR kinase activity nor is a target of AKT activity and instead has inhibitory effects on the kinase that is targeted by the downstream effector p70S6K in a negative feedback loop mechanism, which is evident when revisiting muscle research studies. It is proposed that this residue modification acts as a fine-tuning mechanism that has been gained during vertebrate evolution. In conclusion, it is recommended that Ser2448 is an inadequate measure and that preferential analysis of mTORC1 activation should focus on the downstream and effector proteins, including p70S6K and 4E-BP1, along mTOR protein partners that bind to mTOR protein to form the active complexes 1 and 2.  相似文献   

19.
20.
In vascular smooth muscle cells, IGF-I stimulates SHPS-1/SHP2/Src complex formation which is required for IGF-I-stimulated cell proliferation. Using SHP2/Src silencing and a Pyk2/Y402F mutant, we showed that Pyk2 was also recruited to the SHPS-1 complex. Pyk2 recruitment to SHPS-1 is mediated via the interaction of Pyk2 Tyr402 and the Src in response to IGF-I. Following Src/Pyk2 association, Src phosphorylates Pyk2 on Tyr881 providing a binding site for Grb2. Cells expressing Pyk2/Y881F showed decreased Grb2 recruitment to SHPS-1 and impaired Shc/Grb2 association. This change led to reduced Erk1/2 (MAP kinase) activation and cell proliferation in response to IGF-I. Our results show that, following its recruitment to the SHPS-1 signaling complex, Pyk2 localizes Grb2 in close proximity to Shc thereby facilitating Shc/Grb2 association which leads to Erk1/2 activation in response to IGF-I. Thus, Pyk2 recruitment to SHPS-1 plays an important role in regulating the IGF-I-stimulated mitogenic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号