首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The human intestinal mucosa is constantly exposed to commensal microbiota. Since the gut microbiota is beneficial to the host, hosts have evolved intestine-specific immune systems to co-exist with the microbiota. On the other hand, the intestinal microbiota actively regulates the host’s immune system, and recent studies have revealed that specific commensal bacterial species induce the accumulation of specific immune cell populations. For instance, segmented filamentous bacteria and Clostridium species belonging to clusters XIVa and IV induce the accumulation of Th17 cells in the small intestine and Foxp3+ regulatory T cells in the large intestine, respectively. The immune cells induced by the gut microbiota likely contribute to intestinal homeostasis and influence systemic immunity in the host.  相似文献   

3.
Intestinal epithelial barrier and mucosal immunity   总被引:12,自引:0,他引:12  
The innate immune system plays a crucial role in maintaining the integrity of the intestine and protecting the host against a vast number of potential microbial pathogens from resident and transient gut microflora. Mucosal epithelial cells and Paneth cells produce a variety of antimicrobial peptides (defensins, cathelicidins, crytdinrelated sequence peptides, bactericidal/permeabilityincreasing protein, chemokine CCL20) and bacteriolytic enzymes (lysozyme, group IIA phospholipase A2) that protect mucosal surfaces and crypts containing intestinal stem cells against invading microbes. Many of the intestinal antimicrobial molecules have additional roles of attracting leukocytes, alarming the adaptive immune system or neutralizing proinflammatory bacterial molecules. Dysfunction of components of the innate immune system has recently been implicated in chronic inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, illustrating the pivotal role of innate immunity in maintaining the delicate balance between immune tolerance and immune response in the gut.  相似文献   

4.
Insects mostly develop on decaying and contaminated organic matter and often serve as vectors of biologically transmitted diseases by transporting microorganisms to the plant and animal hosts. As such, insects are constantly ingesting microorganisms, a small fraction of which reach their epithelial surfaces, mainly their digestive tract, where they can establish relationships ranging from symbiosis to mutualism or even parasitism. Understanding the tight physical, genetic, and biochemical interactions that takes place between intestinal epithelia and either resident or infectious microbes has been a long-lasting objective of the immunologist. Research in this field has recently been re-vitalized with the development of deep sequencing techniques, which allow qualitative and quantitative characterization of gut microbiota. Interestingly, the recent identification of regenerative stem cells in the Drosophila gut together with the initial characterization of Drosophila gut microbiota have opened up new avenues of study aimed at understanding the mechanisms that regulate the dialog between the Drosophila gut epithelium and its microbiota of this insect model. The fact that some of the responses are conserved across species combined with the power of Drosophila genetics could make this organism model a useful tool to further elucidate some aspects of the interaction occurring between the microbiota and the human gut.  相似文献   

5.
Intestinal epithelial barrier and mucosal immunity   总被引:5,自引:0,他引:5  
The mucosal immune system acts as a first line of defense against bacterial and viral infections while also playing a crucial role in the establishment and maintenance of mucosal homeostasis between the host and the outside environment. In addition to epithelial cells and antigen-presenting cells (dendritic cells and macrophages), B and T lymphocytes form a dynamic mucosal network for the induction and regulation of secretory IgA (S-IgA) and cytotoxic T lymphocyte (CTL) responses. This review seeks to shed light on the pathways of induction and regulation of these responses and to elucidate the role they simultaneously play in fending off pathogen invasion and maintaining mucosal homeostasis.  相似文献   

6.
Since the early days of the intestinal microbiota research, mouse models have been used frequently to study the interaction of microbes with their host. However, to translate the knowledge gained from mouse studies to a human situation, the major spatio-temporal similarities and differences between intestinal microbiota in mice and humans need to be considered. This is done here with specific attention for the comparative physiology of the intestinal tract, the effect of dietary patterns and differences in genetics. Detailed phylogenetic and metagenomic analysis showed that while many common genera are found in the human and murine intestine, these differ strongly in abundance and in total only 4% of the bacterial genes are found to share considerable identity. Moreover, a large variety of murine strains is available yet most of the microbiota research is performed in wild-type, inbred strains and their transgenic derivatives. It has become increasingly clear that the providers, rearing facilities and the genetic background of these mice have a significant impact on the microbial composition and this is illustrated with recent experimental data. This may affect the reproducibility of mouse microbiota studies and their conclusions. Hence, future studies should take these into account to truly show the effect of diet, genotype or environmental factors on the microbial composition.  相似文献   

7.
Since we live in a dirty environment, we have developed many host defenses to contend with microorganisms. The epithelial lining of our skin, gastrointestinal tract and bronchial tree produces a number of antibacterial peptides, and our phagocytic neutrophils rapidly ingest and enzymatically degrade invading organisms, as well as produce peptides and enzymes with antimicrobial activities. Some of these antimicrobial moieties also appear to alert host cells involved in both innate host defense and adaptive immune responses. The epithelial cells are a source of constitutively produced beta defensin (HBD1) and proinflammatory cytokine-inducible beta defensins (HBD2 and -3) and cathelicidin (LL37). The neutrophils-derived antimicrobial peptides are released on demand from their cytoplasmic granules. They include the enzymes cathepsin G and chymase, azurocidin, a defensins and cathelicidin. In contrast, C5a and C3b are produced by activation of the serum complement cascade. The antimicrobial moieties direct the migration and activate target cells by interacting with selected G-protein-coupled seven-transmembrane receptors (GPCRs) on cell surfaces. The beta defensins interact with the CCR6 chemokine GPCRs, whereas cathelicidins interact with the low-affinity FPRL-1 receptors. The neutrophil-derived cathepsin G acts on the high-affinity FMLP receptor (GPCR) known as FPR, while the receptors for chymase and azurocidin have not been identified as yet. The serum-derived C5a uses a GPCR known as C5aR to mediate its chemotactic and cell-activating effects. Consequently, all these ligand-receptor interactions in addition to mediating chemotaxis also activate receptor-expressing cells to produce other mediators of inflammation.  相似文献   

8.
In the gastrointestinal tract, tachykinins are peptide neurotransmitters in nerve circuits that regulate intestinal motility, secretion, and vascular functions. Tachykinins also contribute to transmission from spinal afferents that innervate the gastrointestinal tract and have roles in the responses of the intestine to inflammation. Tachykinins coexist with acetylcholine, the primary transmitter of excitatory neurons innervating the muscle, and act as a co-neurotransmitter of excitatory neurons. Excitatory transmission is mediated through NK1 receptors (primarily on interstitial cells of Cajal) and NK2 receptors on the muscle. Tachykinins participate in slow excitatory transmission at neuro-neuronal synapses, through NK1 and NK3 receptors, in both ascending and descending pathways affecting motility. Activation of receptors (NK1 and NK2) on the epithelium causes fluid secretion. Tachykinin receptors on immune cells are activated during inflammation of the gut. Finally, tachykinins are released from the central terminals of gastrointestinal afferent neurons in the spinal cord, particularly in nociceptive pathways. Received 24 March 2007; received after revision 30 August 2007; accepted 14 September 2007  相似文献   

9.
Dendritic cells (DCs) play a critical role in orchestrating the innate and adaptive components of the immune system so that appropriate, coordinated responses are mounted against infectious agents. Tissue-resident DCs interact with microbes through germline-encoded pattern-recognition receptors (PRRs), which recognize molecular patterns expressed by various microorganisms. Antigens use PRR activation to instruct DCs for the appropriate priming of natural killer (NK) cells, followed by specific T-cell responses. Due to the central role of DCs in regulating the activation and progression of immune responses, minor imbalances in the feedback control of Toll-like receptor (TLR)-activated cells have been associated with autoimmunity in genetically prone individuals. We review here recent findings on the role of DCs in the priming of innate and adaptive immune responses and the possible involvement of DCs in inducing and maintaining autoimmune reactions.  相似文献   

10.
The human gut represents a highly complex ecosystem, which is densely colonized by a myriad of microorganisms that influence the physiology, immune function and health status of the host. Among the many members of the human gut microbiota, there are microorganisms that have co-evolved with their host and that are believed to exert health-promoting or probiotic effects. Probiotic bacteria isolated from the gut and other environments are commercially exploited, and although there is a growing list of health benefits provided by the consumption of such probiotics, their precise mechanisms of action have essentially remained elusive. Genomics approaches have provided exciting new opportunities for the identification of probiotic effector molecules that elicit specific responses to influence the physiology and immune function of their human host. In this review, we describe the current understanding of the intriguing relationships that exist between the human gut and key members of the gut microbiota such as bifidobacteria and lactobacilli, discussed here as prototypical groups of probiotic microorganisms.  相似文献   

11.
The intestinal epithelium forms a highly active functional interface between the relatively sterile internal body surfaces and the enormously complex and diverse microbiota that are contained within the lumen. Genetic models that allow for manipulation of genes specifically in the intestinal epithelium have provided an avenue to understand the diverse set of pathways whereby intestinal epithelial cells (IECs) direct the immune state of the mucosa associated with homeostasis versus either productive or non-productive inflammation as occurs during enteropathogen invasion or inflammatory bowel disease (IBD), respectively. These pathways include the unfolded protein response (UPR) induced by stress in the endoplasmic reticulum (ER), autophagy, a self-cannibalistic pathway important for intracellular bacterial killing and proper Paneth cell function as well as the interrelated functions of NOD2/NF-κB signaling which also regulate autophagy induction. Multiple genes controlling these IEC pathways have been shown to be genetic risk factors for human IBD. This highlights the importance of these pathways not only for proper IEC function but also suggesting that IECs may be one of the cellular originators of organ-specific and systemic inflammation as in IBD.  相似文献   

12.
Infectious tolerance is a process whereby one regulatory lymphoid population confers suppressive capacity on another. Diverse immune responses are induced following infection or inflammatory insult that can protect the host, or potentially cause damage if not properly controlled. Thus, the process of infectious tolerance may be critical in vivo for exerting effective immune control and maintaining immune homeostasis by generating specialized regulatory sub-populations with distinct mechanistic capabilities. Foxp3(+) regulatory T cells (T(regs)) are a central mediator of infectious tolerance through their ability to convert conventional T cells into induced regulatory T cells (iT(regs)) directly by secretion of the suppressive cytokines TGF-β, IL-10, or IL-35, or indirectly via dendritic cells. In this review, we will discuss the mechanisms and cell populations that mediate and contribute to infectious tolerance, with a focus on the intestinal environment, where tolerance induction to foreign material is critical.  相似文献   

13.
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut–brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis—all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson’s and Alzheimer’s diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.  相似文献   

14.
The composition of the gut microbiota is in constant flow under the influence of factors such as the diet, ingested drugs, the intestinal mucosa, the immune system, and the microbiota itself. Natural variations in the gut microbiota can deteriorate to a state of dysbiosis when stress conditions rapidly decrease microbial diversity and promote the expansion of specific bacterial taxa. The mechanisms underlying intestinal dysbiosis often remain unclear given that combinations of natural variations and stress factors mediate cascades of destabilizing events. Oxidative stress, bacteriophages induction and the secretion of bacterial toxins can trigger rapid shifts among intestinal microbial groups thereby yielding dysbiosis. A multitude of diseases including inflammatory bowel diseases but also metabolic disorders such as obesity and diabetes type II are associated with intestinal dysbiosis. The characterization of the changes leading to intestinal dysbiosis and the identification of the microbial taxa contributing to pathological effects are essential prerequisites to better understand the impact of the microbiota on health and disease.  相似文献   

15.
The gut microbiota represents a highly complex assembly of microbes, which interact with each other and with their host. These interactions have various implications in terms of health and disease, and this multi-author review issue will address a number of selected aspects pertaining to gut microbiota research.  相似文献   

16.
Intestinal mucosa integrates primary digestive functions with immune functions such as pathogen surveillance, antigen transport and induction of mucosal immunity and tolerance. Intestinal adaptive immunity is elicited in organized mucosa-associated lymphoid tissue (O-MALT) that is composed of antigen-presenting cells and lymphocytes and achieved by effector cells widely distributed in mucosa (diffuse MALT or D-MALT). Interaction between the intestinal epithelium, the O-MALT and the diffuse MALT plays a critical role in establishing an adequate immune response. In regions associated to O-MALT, lympho-epithelial cross-talks lead to acquisition of a specific epithelial phenotype that contributes to O-MALT organization and functionality. Beyond the expression of several innate immune functions, the intestinal epithelium may directly take up and present antigens due to the expression of major histocompatibility complex (MHC) and MHC-related molecules. A complex genetic program that will be outlined in the present review controls the development of immune functions of the intestinal epithelium. The effect of environmental signals on the modulation of this ontogenetic program during development and neonatal life, from bioactive components of amniotic fluid to lactation and bacterial colonization, will be discussed.  相似文献   

17.
18.
Engineering microbes for targeted strikes against human pathogens   总被引:1,自引:0,他引:1  
Lack of pathogen specificity in antimicrobial therapy causes non-discriminant microbial cell killing that disrupts the microflora present. As a result, potentially helpful microbial cells are killed along with the pathogen, altering the biodiversity and dynamic interactions within the population. Moreover, the unwarranted exposure of antibiotics to microbes increases the likelihood of developing resistance and perpetuates the emergence of multidrug resistance. Synthetic biology offers an alternative solution where specificity can be conferred to reduce the non-specific, non-targeted activity of currently available antibiotics, and instead provides targeted therapy against specific pathogens and minimising collateral damage to the host’s inherent microbiota. With a greater understanding of the microbiome and the available genetic engineering tools for microbial cells, it is possible to devise antimicrobial strategies for novel antimicrobial therapy that are able to precisely and selectively remove infectious pathogens. Herein, we review the strategies developed by unlocking some of the natural mechanisms used by the microbes and how these may be utilised in targeted antimicrobial therapy, with the promise of reducing the current global bane of multidrug antimicrobial resistance.  相似文献   

19.
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4+ T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8+ T cells.  相似文献   

20.
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity’s most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号