首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微波合成锂离子电池正极材料LiCoO_2   总被引:1,自引:1,他引:1  
用微波合成了锂离子电池正极材料LiCoO2,采用XRD、SEM和DC 5C电池测试仪研究了LiCoO2的结构、形貌和电化学性能·研究结果表明,在900W的功率和2 45GHz的频率下,反应10min即可得到纯度高、具有层状结构的LiCoO2电池材料,XRD谱线与标准层状LiCoO2材料基本一致,充放电的实验结果显示:放电容量可达140mAh/g,放电平台和充放电时间均显示出微波合成的LiCoO2具有较好的电化学活性·实验考查了Li/Co摩尔比对产品结构的影响,研究结果证明Li/Co比为1.05∶1时,得到的LiCoO2与标准样符合得更好·  相似文献   

2.
通过掺杂过渡金属元素铌(Nb)和改进合成方法,成功得到了电池充电截至电压为4.3V和4.35V时稳定的正极材料LiCoO2,其初始放电比容量分别达到157.5mAh/g(四个抽样电池的平均值,下同)和163.7mAh/g,比目前普遍使用的充电截至电压为4.2V的LiCoO2正极材料的比容量(约140mAh/g)高出12%和16%以上。以1C倍率充放电200周后,容量保持率大于95%,显示出良好的循环性能。过充安全测试结果表明其达到现行安全标准。此类LiCoO2材料的应用将有望较大幅度提高锂离子电池的能量密度,说明拓宽电池的使用电压范围也可能不失为提高电池比能量的一种有效途径。  相似文献   

3.
采用回收的含有少量Co3O4的LiCoO2为原料, 加入Li2CO3调整Li与Co的物质的量比, 高温合成正极材料LiCoO2, 运用扫描电镜和X射线衍射仪对合成的LiCoO2进行微观形貌与晶相结构的研究. 研究结果表明 合成时间对晶体结构和电化学性能有较大的影响, 合成时间越长, LiCoO2的结构越完整;将LiCoO2样品组装成电池进行电化学检测, 烧结时间为12 h的样品首次充、放电比容量分别为161.16和150.67 mA·h/g, 经30次循环之后, 放电比容量仍有141.19 mA·h/g, 表现出良好的电化学性能.  相似文献   

4.
本文通过水热合成法成功制备了一种富锂Li1.166(Mn0.6Ni0.2Co0.2)0.834O2正极材料。并通过X射线衍射(XRD)、扫描电子显微镜(SEM)和高精度电池测试系统分别对电极材料的结构、形貌和电化学性能进行了相应的表征和测试分析.结果表明,样品Li1.166(Mn0.6Ni0.2Co0.2)0.834O2具有较好的多面体结构特点以及优异的电化学性能,该电极材料相对于商用LiCoO2材料(约135mAh g?1)具有更高的充放电比容量,其值分别为363.8 mAh g?1 和 222.2 mAh g?1,首次库仑效率为61.1%.循环100周之后可逆放电比容量仍然可以达到235.5 mAh g?1.该富锂Li1.166(Mn0.6Ni0.2Co0.2)0.834O2正极材料在高能量密度动力电池发展中具有良好的应用前景和广阔的市场空间.  相似文献   

5.
在电解法的基础上,提出了一种新的改进方法来制备锂离子电池正极材料.经超声波与相转移后,采用电解液中析出的Li2CO3和电解中间产物Co(OH)2作为前驱物制备得到了锂离子正极材料LiCoO2.通过X射线衍射,扫描电镜对所合成的材料进行了表征.实验结果证明,该前驱物在850℃下反应仅3h就能得到性能优异的LiCoO2正极材料,大大缩短了反应时间.  相似文献   

6.
LiNi0.8Co0.2O2的表面修饰及性能   总被引:5,自引:0,他引:5  
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将LiNi0.8Co0.2O2,LiOH*H2O和H3BO3以摩尔比100∶1∶2均匀混合,500℃热处理10h,在LiNi0.8Co0.2O2表面包覆上一层Li2O-2B2O3玻璃层。用X光电子能谱、扫描电镜和X光衍射分析对包覆前后LiNi0.8Co0.2O2的结构进行了表征。结果表明,表面修饰有效地抑制了LiNi0.8Co0.2O2和电解液之间的恶性相互作用,材料的实际比容量提高,充放电循环稳定性改善,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径。  相似文献   

7.
锂离子电池用正极材料Li(Co0.2-XNi0.8MnX)O2的合成制备研究   总被引:1,自引:1,他引:1  
研究了一种制备新型锂离子电池正极材料的工艺方法.通过采用溶胶凝胶法(sol-gel法合成了新型电池正极材料Li(Co0.2-XNi0.8MnX)O2。并采用XRD方法分析了材料的相变过程、烧结温度、烧结时间对材料相合成的影响及不Mn/Co比掺杂对材料相变的影响;通过SEM照片可见,Li(Co0.2-XNi0.8MnX)O2粉末元素分布均匀、粒径为1~4微米.为今后进行充放电性能的测试工作做准备.  相似文献   

8.
LiNi_(0.8)Co_(0.2)O_2的表面修饰及性能   总被引:3,自引:0,他引:3  
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将 L i Ni0 .8Co0 .2 O2 ,L i OH.H2 O和 H3BO3以摩尔比 10 0 :1:2均匀混合 ,5 0 0℃热处理 10 h,在 L i Ni0 .8Co0 .2 O2 表面包覆上一层 L i2 O- 2 B2 O3玻璃层。用 X光电子能谱、扫描电镜和 X光衍射分析对包覆前后 L i Ni0 .8Co0 .2 O2 的结构进行了表征。结果表明 ,表面修饰有效地抑制了 L i Ni0 .8Co0 .2 O2 和电解液之间的恶性相互作用 ,材料的实际比容量提高 ,充放电循环稳定性改善 ,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径  相似文献   

9.
以克拉霉素为模型药物,乙基纤维素与羟丙基甲基纤维素为膜材料,采用溶剂挥发法制备混合膜微胶囊,探索制备的最佳条件,并考察混合膜微胶囊的缓控释性能.实验结果表明,混合膜克拉霉素微胶囊的最佳制备条件为∶分散相中膜材料浓度为3%、乙基纤维素/羟丙基甲基纤维素为6∶1~7∶1、投药量2∶1~3∶1、连续相中SDS浓度0.1%、PVA浓度1.0%、油水比1∶8.  相似文献   

10.
失效锂离子电池正极材料的再生及电化学性能   总被引:1,自引:0,他引:1  
以废旧锂离子电池正极材料钴酸锂为原料,将锂与钴元素的比例进行适当调整后,采用高温固相合成制备出LiCoO2材料,并利用XRD、SEM、循环伏安等手段对不同煅烧温度下合成LiCoO2材料的晶相结构、表面形貌及电化学性能进行测试表征.结果表明,经850℃煅烧12h后的LiCoO2材料的性能较好,首次充电容量达143mA.h/g,放电比容量达126mA.h/g,循环30周之后仍保持92%的放电比容量,再生后的LiCoO2材料表现出良好的电化学性能.  相似文献   

11.
采用固相焙烧法制备正极材料钴酸锂LiCoO 2 ,并采用异丙醇铝(AIP)对其进行表面包覆,通过XRD、SEM、EDS mapping和电池充放电测试研究了AIP包覆量对材料结构和电化学性能的影响.电化学性能测试表明,AIP包覆可有效改善材料的循环性能,提高材料的放电比容量、库仑效率和倍率性能.相比于未包覆的LiCoO 2 样品,包覆量为0.1%的LiCoO 2 样品,具有最优异的电化学性能,在0.2C下的首次放电比容量提升至176.8 mAh/g,库仑效率高达97.2%;在1.0C下经50次循环后容量保持率为96.2%.  相似文献   

12.
以Co2O3和LiOH·H2O为原料,微波加热合成锂离子电池正极材料LiCoO2·考察了微波输出功率、微波加热时间及保温时间对产物结构和组成的影响,用XRD实验对所得产品进行表征·结果表明,当微波输入功率为360W,加热时间为10min,保温时间为10min时,产品是单一相层状结构LiCoO2,晶格常数和标准值一致·SEM实验显示,该反应条件下制备LiCoO2样品颗粒边缘清晰、光滑,颗粒度约为5μm,粒度分布较均匀·对LiCoO2的微波合成机理进行了探讨,结合XRD实验,说明Co2O3和LiOH·H2O反应生成LiCoO2分两步完成·  相似文献   

13.
通过掺杂过渡金属元素铜,成功得到了粉末振实密度超过2.8g/cm3的高密度的锂离子电池正极材料LiCoO2.其初始放电比容量超过140mAh/g,以1C倍率充放电300周后,容量保持率大于90%,显示出良好的循环性能.SEM照片显示材料颗粒致密、表面光滑,粒径主要分布在5~10μm.安全测试结果表明其达到安全标准.此类LiCoO2材料的应用将有利于提高目前锂离子电池的体积能量密度.  相似文献   

14.
复合电解质材料的电性能及应用   总被引:6,自引:4,他引:2  
利用固相法制备了不同粒度的Ce0.8Sm0.2 O1.9(SDC)与(ZrO2)0.92(Y2O3)0.08(YSZ)的复合材料(SDC与YSZ 的质量比分别为1∶9, 3∶7, 5∶5), 以其为电解质制备成片状燃料电池, X射线衍射 结果表明, 材料呈双相复合结构, 阻抗谱和电池性能的测量结果表明, 电解质在低温和 掺杂量较低时电导率比纯YSZ高, 在电池工作温区(700~850 ℃)内电导率都较低. 以它为 电解质的氢氧燃料电池开路电压很低, 并且随SDC掺杂量的升高下降的非常明显.  相似文献   

15.
为研究离子掺杂对锂离子正极材料LiNi1/3Co1/3Mn1/3O2的影响,采用氢氧化物共沉淀法制备了Ti4+掺杂改性的锂离子正极材料LiNi1/3-1/40Co1/3Mn1/3Ti1/40O2、LiNi1/3-Co1/3-1/40Mn1/3Ti1/40O2和LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2,并运用X射线衍射仪和扫描电子显微镜对Ti掺杂改性后正极材料的晶型和微观结构进行表征,通过高精度电池性能检测系统对正极材料的电化学性能进行检测.结果表明:Ti分别取代Ni、Co和Mn对三元复合正极材料进行掺杂改性后,改性材料都保持典型的α-NaFeO2层状结构,且晶型良好;LiNi1/3-Co1/3Mn1/3-1/40Ti1/40O2轮廓最分明,且形貌均一;3种改性材料的电化学性能均有一定程度的提高,其中LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2提高最为明显,在0.1 C、1.0 C和2.0 C倍率下其首次放电比容量分别为145.35、140.79和125.60 mA.h/g,1.0 C倍率下循环30次后的容量保持率为88.06%.  相似文献   

16.
高密度球形LiNi_(0.8)Co_(0.2)O_2的制备及性能   总被引:6,自引:0,他引:6  
采用控制结晶法合成球形 β- Ni0 .8Co0 .2 (OH) 2 ,与L i OH.H2 O 混合 ,在 75 0℃通 O2 热处理 8h 合成球形L i Ni0 .8Co0 .2 O2 粉末。用 X光衍射和扫描电镜分析对 β- Ni0 .8Co0 .2 (OH) 2 和 L i Ni0 .8Co0 .2 O2 粉末的结构进行了表征。充放电测试表明该球形 L i Ni0 .8Co0 .2 O2 正极材料具有优良的电化学性能 :首次充电比容量为 2 17m A.h.g- 1 ,放电比容量为172 m A.h.g- 1 ,5 0次充放电循环后保持初始放电比容量的97.5 %。该球形 L i Ni0 .8Co0 .2 O2 粉末的振实密度高达 2 .8g.cm- 3,远高于一般非球形 L i Ni0 .8Co0 .2 O2 正极材料。高密度球形 L i Ni0 .8Co0 .2 O2 正极材料用于锂离子电池可以显著提高电池的能量密度。  相似文献   

17.
LiNixMn2-xO4对锂离子电池材料LiCoO2的表面改性研究   总被引:1,自引:0,他引:1  
在锂离子电池正极材料LiCoO2表面上修饰LiNixMn2-xO4来改善LiCoO2在循环过程中的容量衰减问题.对所得产物进行了XRD、SEM表征,并进行了充放电容量测试和交流阻抗测试.通过XRD和SEM,发现LiNixMn2-xO4修饰没有改变材料的晶体结构.在电化学性能测试中,由于包覆LiNixMn2-xO4可以减少材料与电解液的直接接触,最大程度地减缓电极材料在电化学循环时结构遭到破坏,在修饰量较小(3 5%)时,该改性方法改善了LiCoO2电极的循环性能,69次循环后放电比容量没有衰减,且大大地提高了平台效率.  相似文献   

18.
本文通过超声分散、水热生长和煅烧方法制备了新型蜂窝结构Si/Co3O4复合负极材料,在此基础上研究其复合结构与电化学性能的关系。采用X射线衍(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的物相、微观形貌进行表征,并采用电化学手段对其性能进行测试。结果表明:硅纳米颗粒主要分布于Co3O4蜂窝孔洞结构的内层;相比于纯Si负极材料,蜂窝结构Si/Co3O4复合材料具有更好的结构稳定性、倍率性能和循环性能,首次放电比容量为1475 mAh g-1,第二次维持在851 mAh g-1,经过75 次循环后放电比容量仍有 802 mAh g-1,较第二次比容量损失率仅为0.17%/周,这主要是归因于硅纳米颗粒和Co3O4之间存的空隙为Si负极嵌锂过程中的体积膨胀提供了空间,有效缓冲Si负极的体积变化。  相似文献   

19.
锂电池发展受锂离子电池正极材料制约,这是因为正极材料与负极材料相比,其功率密度及能量密度均低于负极材料,进而引发钽电池安全隐患。目前在商业锂离子电池中,LiC002正极材料应用最为广泛,具有循环性能好的优点,但由于热稳定性差。且聚毒性特征,难以得到进一步应用。该文拟采用热聚合法合成锂镍钴锰氧材料(LiNi1/3Co1/3Mn1/2O2),对其制备及表征性能进行研究,以求寻得高能量,高密度、低污染的电极材料。  相似文献   

20.
为了提高锂离子二次电池的笔容量和循环寿命,研究者们越来越重视有机电解液的使用及选择.实验选择了EC和DMC二元体系,将其以不同体积配比用于锂离子二次扣式电池中(正极材料为LiCoO2,负极材料为CMS,电解质盐为LiPF6)以研究电解液的电化学性能.通过实验,发现此种电解液的最佳配比为EC∶DMC=3∶7(1 mol/L LiPF6),此种电解液大大提高了电池的循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号