首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
尖晶石锰酸锂和橄榄石磷酸铁锂离子电池是当前电动汽车用动力电池的主体,采用实验比较研究的方法,对比了两种动力电池正极材料电化学特性,研究了两种材料制备成动力电池的能量密度、功率密度、温度特性、循环寿命以及应用特性.结果表明:除低温性能和功率密度外,磷酸铁锂动力电池在其他方面的性能均优于锰酸锂动力电池.  相似文献   

2.
磷酸铁锂(LiFePO4)为橄榄石结构,是一种常见的锂离子电池正极材料,其理论比容量为170 mAh/g,工作电压为3.2 V,电子导电率为1×10-10~1×10-9 S/cm.本文主要以锂离子电池磷酸铁锂正极材料的相关专利申请作为研究对象,对锂离子电池磷酸铁锂正极材料的掺杂技术和包覆技术的专利文献进行分析.通过分析...  相似文献   

3.
采用高温固相浸渍法合成了多元复合掺杂尖晶石型锰酸锂Li 1.02MxMn 2-xQyO 4-y正极材料.XRD表征合成的产物均为良好的尖晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸锂正极材料Li 1.02CoaCrbLacMn 2-a-b-cFyO 4-y较富锂尖晶石和单元素Co、Cr掺杂的正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55 ℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上.作为锂离子电池的正极材料,该复合掺杂材料是众多取代钴酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

4.
以溶胶-凝胶法合成了阴阳离子复合掺杂尖晶石型锰酸锂正极材料LiCu0.05Mn1.95O3.9F0.1,XRD表征合成产物具有良好的尖晶石结构;SEM测试表明所合成产物的颗粒达到了亚微米级,且分布均匀,形貌较好.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知 LiCu0.05Mn1.95O3.9F0.1材料比LiMn2O4正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性.  相似文献   

5.
利用磷化工生产过程的副产物Fe-P废渣为原材料,合成磷酸铁锂正极材料,针对其电化学性能不佳的情况,通过包覆不同含量的碳及不同的碳源来进行优化.实验结果表明,当碳含量为5 wt%且碳源为葡萄糖时,磷酸铁锂材料能表现出最好的电化学性能.本结果为磷酸铁锂正极材料的改性提供了一种新的思路.  相似文献   

6.
磷酸铁锂正极材料具有比容量大、安全性高、性价比高以及循环寿命长等优点,被认为是最具应用前景的锂离子电池正极材料之一。论述了橄榄石型磷酸铁锂的晶体结构特征以及充放电反应机制,综述了近年来采用葡萄糖、活性碳和石墨烯等不同的碳源进行碳包覆, 硫离子、镁离子、镍离子、氟离子、钒离子、钠离子和银离子等不同金属离子和非金属离子进行离子掺杂以及蒸发诱导自组装法、碳热还原法和喷雾干燥法等不同合成方法进行材料纳米化等改性方式对锂离子电池磷酸铁锂正极材料的影响。最后简要分析了目前改性方法仍存在的问题,并对其前景进行了展望。  相似文献   

7.
采用均相沉淀法制备前驱体,再通过高温煅烧制备了球形锂离子电池正极材料磷酸铁锂. 扫描电镜(SEM)照片显示材料为球形颗粒,XRD图谱显示该材料为橄榄石结构的磷酸铁锂,无明显杂质峰存在. 在0.5 C下,首次放电比容量为124 mAh/g,25周循环后无明显衰退.  相似文献   

8.
橄榄石型磷酸铁锂(LiFePO4)正极材料因其成本低、环境友好、安全性高而被看好,并被作为高性能的锂离子电池正极材料广泛应用于商用电池。目前,LiFePO4/C二次电池以其良好的热稳定性、稳定的循环性能和较低的室温自放电率被广泛用于电子产品、汽车动力电池以及其他与场合相关的应用。然而,当基于磷酸铁锂的电池在寒冷气候下运行时,其应用受到严重限制。这一结果是由于Li+在电极内的传输能力大大降低,特别是导致电解质的电化学容量和功率性能急剧下降。因此,低温电解质的设计对于磷酸铁锂电池的进一步商业应用非常重要。本文回顾了导致磷酸铁锂电池低温性能不佳的关键因素以及低温电解质的研究进展。特别关注电解质成分,包括锂盐、助溶剂、添加剂和新电解质的开发。还分析了影响阳极的因素。最后,根据目前的研究进展,总结了一些观点,为提高未来低温下LiFePO4/C商业电池的实用性提供合适的改性方法和研究建议。  相似文献   

9.
以溶胶-凝胶法合成了阴阳离子复合掺杂尖晶石型锰酸锂正极材料LiCu0.05M0.95O3.9F0.1 ,XRD表征合成产物具有良好的尖晶石结构;SEM测试表明所合成产物的颗粒达到了亚微米级,且分布均匀,形貌较好。以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:LiCu0.05Mn1.95O3.9F0.1材料比LiMn2O4正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性。  相似文献   

10.
采用高温固相浸渍法合成了多元复合掺杂尖品晶石型锰酸锂Li1.02MxMn2-xQyO4-y正极材料。XRD表征合成的产物均为良好的尖品晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布。以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸钾正极材料Li1.02CoaCrbLacMn2-a-b-cFyO4-y较富锂尖,晶石和单元Co、Cr掺杂的正极做材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上。作为钾离子电池的正极材料,恢复合掺杂材料是众多取代钻酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

11.
以Fe3+为铁源,葡萄糖和有机物聚乙烯醇PVA共同为碳源两步碳热还原法合成LiFePO4/C材料.采用XRD,SEM,LAND电池测试系统及电化学工作站等对材料的晶体结构、形貌和电化学性能进行了研究,并对PVA不同时间加入对材料性能的影响做了分析.结果表明:PVA在原料预烧之后加入,所得LiFePO4/C复合材料具有丰富的表面结构,有较小的交流阻抗和很好的充放电性能,0.1C下初始放电比容量达到了167mAh.g-1,且不同倍率下循环性能稳定.  相似文献   

12.
采用基于密度泛函理论的第一性计算方法,研究了LiFePO4中Li、P位替位掺杂Na、As时的电子结构. 计算表明:少量掺杂并未整体改变LiFePO4电子结构,但可以调整体系中占主导地位的PO键、FeO键之间的相互作用,从而改善材料的特性;共掺杂体系的带隙宽度减小、嵌锂电位略微下降,掺入的Na、As未阻塞锂离子的一维通道.  相似文献   

13.
目的研究LiFePO4在不同锂盐电解液体系中的电化学性能。方法采用恒电流充电、放电和循环伏安方法来进行相关研究。结果在不同锂盐(LiClO4、LiBF4以及LiPF6)和不同碳酸酯混合溶剂(EC-DEC、EC-DMC或者PC-DMC)所组成的电解液中,电极材料在1 M LiClO4/EC-DMC和1 M LiPF6/EC-DMC电解液中的电化学性能较好。其中在1 M LiClO4/EC-DMC电解液中充放电容量最高,而在1 M LiBF4/EC-DMC电解液中的充电、放电容量最低。结论锂盐本身及电解液的电导率对磷酸亚铁锂电化学性能有较大的影响。  相似文献   

14.
LiFePO4是最近几年被广泛报道的一种新型锂离子电池正极材料.它具有较高的能量密度、优良的循环性能,资源丰富,安全性能好、对环境友好等许多优点,而且理论容量高达170mAh/g.但也存在电子导电率和锂离子扩散速度低等缺点,需要进一步的改进.本文概述了LiFePO4的结构、充放电机理、合成方法、以及其优缺点、如何改性等方面,介绍了这种新型的锂离子电池正极材料的目前研究概况.  相似文献   

15.
考察添加碳纳米管作导电剂对LiFePO4锂离子电池性能的影响.采用液态锂离子电池工艺制备063048型LiFePO4锂离子电池,利用XRD,SEM及充放电方法对电池电极的结构、表面形貌和电化学性能进行表征和测试.研究结果表明:添加碳纳米管作导电剂的极片压实密度与未添加的相比提高了5%,同时也形成了良好的导电网络,电池内阻较小,电池首次放电容量达到131.8 mA·h/g,而未添加碳纳米管的首次放电容量为124.6 mA.h/g;添加碳纳米管作导电剂电池的循环性能较好,120次循环后容量几乎没有衰减,而未添加碳纳米管的电池经120次循环后容量保持率为94.1%.添加碳纳米管作导电剂电池的倍率性能优异,其6C的放电容量是0.5C的81.8%(其中,C为电流倍率),未添加碳纳米管的电池6C的放电容量是0.5C的75%.添加碳纳米管作导电剂的电池,电极界面阻抗比未添加碳纳米管的电池的界面阻抗小.  相似文献   

16.
典型温度下磷酸铁锂电池PNGV模型研究   总被引:1,自引:0,他引:1  
温度是影响电池性能的重要因素之一。本文对典型温度下磷酸铁锂电池PNGV模型进行研究。通过大量的试验得出了磷酸铁锂电池充放电特性曲线,在此基础上建立了PNGV模型。应用混合脉冲功率性能测试试验(HPPC)对典型温度下模型参数进行了辨识,分析了典型温度下模型参数的变化规律。最后应用基于北京公交的纯电动客车用动力电池动态测试工况(BBDST)对模型进行了验证。验证结果表明PNGV模型在一定程度上能够反映磷酸铁锂电池的特性。同时,该模型在磷酸铁锂电池上的应用也存在一定的累积误差。  相似文献   

17.
串联磷酸铁锂电池组保护电路设计   总被引:2,自引:0,他引:2  
设计出了一种新型的串联锂离子电池组保护电路.该保护电路采用MOSFET开关,根据过流时电池组MOSFET电压的变化来设计过流保护电路,并通过实物验证了该保护电路能够在20ms动作,从而保护了电池组和改善了电池的性能,延长了电池的寿命.  相似文献   

18.
正极材料LiFePO4的电化学性能的改进   总被引:9,自引:1,他引:9  
采用固相反应法合成了LiFePO4正极材料,在20mA/g的电流密度下进行恒电流充放电,比容量可以达到135mAh/g,为了改进LiFePO4的性能,提高其高倍率性能,尝试了两种途径并合成出Li(Fe0.8Mn0.2)PO4和LiFePO4/C。低倍率充放电实验得出的两个样品的比容量分别可达到145mAh/g和144mAh/g,而且表现出了良好的循环性能和平坦的电压平台,以上两种方法制备出的材料均具有较好的高倍率性能。  相似文献   

19.
A one-step synthetic method was used to synthesize Olivline LiFePO4 powders by direct ball milling the stoichiometric mixture of Fe, Li3PO4 , and FePO4 powders. XRD and TEM measurements revealed that the as-prepared LiFePO4 powder have a homogeneous Olivine structure and a uniform size distribution of ca. 50 nm. Based on this material, a LiFePO4/C composite was prepared and used for the cathode material of Li-ion batteries. The charge-discharge experiments demonstrated that the LiFePO4/C composite material has a high capacity of 132 mAh/g at 0.1 C and a quite highrate capability of 95 mAh/g at 1 C. This new ball-milling method may provide a completely green synthetic route for preparing the materials of this type cost-effectively and in large volume.  相似文献   

20.
采用固相法合成LiFePO4和LiFePO4/C复合材料,研究了蔗糖分解的碳包覆对LiFePO4材料性能的影响.XRD检测纯LiFePO4为单一的橄榄石相,而LiFePO4/C复合材料中出现高导电物质Fe2P相;SEM显示样品的粒径均在1μm以下,包覆碳样品的晶粒更小,但出现团聚现象.此方法合成的纯LiFePO4初始容量高达136.6 mAh/g.Fe2P的存在使LiFePO4材料的大电流放电能力得到提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号