首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
研究在不同复合比及温度条件下冲击载荷对热轧不锈钢复合板力学性能的影响。结果表明,热轧复合板随覆层厚度增大或试验温度升高,其冲击吸收能增大,覆层厚度为8mm时,冲击功达到稳定值150J;碳钢层断面为解理面与韧窝混合断裂形貌,不锈钢层断面为韧窝断裂形貌,靠近复合界面不锈钢侧呈沿晶断裂与韧性断裂形貌;复合界面处开裂情况对缺口位置不敏感;热轧不锈钢复合板冲击加载过程复合界面不易开裂。  相似文献   

2.
采用非真空热轧方法制备304不锈钢/Q235碳钢复合板材,利用OM、SEM、EDS等研究了不同压下率和轧后冷却方式下复合界面夹杂物、界面组织及力学行为的演变,并分析了C扩散对复合板界面组织形成及结合强度的影响。结果表明,随着轧制压下率的增加,界面夹杂物由块状向线型、连续点状乃至弥散点状分布变化。当压下率较低(28%)时,复合板剪切断裂位于结合界面处,随着压下率增加至47%及以上,复合板断裂位置为脱碳铁素体区。另外,热轧复合板经水冷工艺处理后,由于冷却速率较快,要抑制碳钢侧C元素的扩散,避免复合界面处脱碳区域的形成,从而提高了复合界面的结合强度。  相似文献   

3.
不锈钢复合板生产技术综述   总被引:5,自引:0,他引:5  
阐述了目前不锈钢复合板的生产方法和制备技术,分析了各种方法的优缺点。在不锈钢复合板的生产和制备方法中,爆炸焊接热轧法和钎焊连接热轧法比较成熟,已得到普遍应用,但具有很大的局限性。反向凝固法和电磁连铸法具有很强优势,但工艺还不成熟,有待进一步深入研究。  相似文献   

4.
阐述了目前不锈钢复合板的生产方法和制备技术,分析了各种方法的优缺点.在不锈钢复合板的生产和制备方法中,爆炸焊接热轧法和钎焊连接热轧法比较成熟,已得到普遍应用,但具有很大的局限性.反向凝固法和电磁连铸法具有很强优势,但工艺还不成熟,有待进一步深入研究.  相似文献   

5.
本文借助SEM、EDS和EPMA等分析了热轧不锈钢复合板界面组织及拉伸断口特征,结果表明:复合板结合界面存在元素扩散现象,不同元素扩散距离不同从而导致形成特殊带状组织;无Ni结合界面的拉伸断口呈沿晶断裂特征;含Ni结合界面因元素扩散受到抑制,拉伸断口呈韧性断裂特征,其界面抗剪强度相比无Ni结合界面虽有所下降,但仍远大于国标要求的210 MPa。拉伸断裂过程动态抓拍结果显示:复合板结合界面先发生曲折开裂,随后基层与复层发生不同步断裂。  相似文献   

6.
为了提高钛-钢复合板界面结合强度,本文提出在钛-钢之间加入Ni箔作为过渡层,采用真空轧制方法制备TA1-Ni-Q235复合板,研究了Ni中间层厚度及轧制温度对复合板组织及结合强度的影响。实验结果表明,Ni中间层可有效阻止Ti-Fe和TiC化合物生成,随着Ni中间层厚度增加,阻止C元素扩散作用加强,界面结合强度提高;随着轧制压下率的增加,界面结合强度提高;随着轧制温度的提高,界面化合物层厚度增加,界面结合强度下降,其中,Ti-Ni界面处形成Ti2Ni和TiNi化合物。  相似文献   

7.
应用ANSYS有限元软件分析了热轧复合的不锈铜复合板在冷轧过程中的变形特性,界面结合强度的分析给定以及确定成卷可逆带张力冷轧时的最大道次压下量值。  相似文献   

8.
通过实验测试不同爆炸焊接工艺 轧制获得的1Cr18Ni9Ti/20G复合板结合界面的组织、强度和性能进行了比较研究。实验表明:用下限获得的微小波状界面的爆炸焊接复合板,才能实现成功轧制,而大波状复合板本身存在一定的微观缺陷,在轧制时由于分层会使轧制失效。  相似文献   

9.
采用扫描电镜、能谱分析仪和显微硬度等手段对铝 (L2 ) 铜 (T2 )爆炸焊接复合板结合界面的组织、结构、性能进行了研究。结果表明 ,在本试验条件下Al Cu复合板的结合界面呈波状结构 ;结合区发生了剧烈的塑性变形 ,产生形变流线和加工硬化 ;结合界面两侧存在原子扩散及漩涡 ,漩涡内汇集有金属熔体、气孔、疏松和金属碎块等 ;在结合界面上发现很薄的白亮层。据此 ,探讨了结合界面组织形貌与爆炸焊接工艺及质量的关系 ,从而为爆炸复合板的实际生产提供技术支持  相似文献   

10.
为了提高生产效率和焊接质量,必须实现焊接过程自动化,而焊缝跟踪是实现焊接过程自动化的一个重要方面。本文的主要目的是研究薄不锈钢复合板的焊接工艺,去分析其力学性能和腐蚀性能,为以后实现焊缝跟踪,进而实现焊接制管的自动化奠定基础。  相似文献   

11.
钛合金/镍/不锈钢网的扩散连接技术   总被引:3,自引:0,他引:3  
研究了以Ni为中间过渡层时,钛合金与不锈钢网的扩散连接技术,分析了影响扩散连接的主要因素和接头微观组织,确定了最佳工艺参数,并获得了剪切强度达146MPa的无变形接头。  相似文献   

12.
加镍过渡层钛合金/不锈钢网的扩散连接技术   总被引:5,自引:0,他引:5  
研究TC4镣合金与00Crl8Nil0不锈钢网加Ni中间过渡层时的扩散连接工艺、接头微观组织及其力学性能.结果表明,扩散层由较薄单层TiNi或较厚Ti2Ni/TiNi/TiNi3多层脆性相组成时,接头强度偏低;当过渡层镍箔厚30μm时,最佳连接工艺参数为:连接温度θ=850℃、连接比压力p=10MPa、连接时间t=10—15min,接头剪切强度比直接连接时提高近一倍,达146MPa,且连接试样无明显变形.  相似文献   

13.
运用四层对称轧制复合法对不锈钢覆铝板的生产工艺进行了研究。通过与传统的二层非对称轧制复合对比,发现四层对称轧制复合法的生产效率提高了近1倍,制备的复合板较平直;在试验条件下,四层对称轧制复合时不锈钢、铝的延伸系数相差较小;四层对称轧制复合制备的复合板的结合强度比二层非对称轧制复合的略大。  相似文献   

14.
真空轧制不锈钢复合板的组织和性能   总被引:5,自引:0,他引:5  
采用真空轧制法对6mm厚的奥氏体不锈钢板和50mm厚的碳钢板复合.在高真空、高温和大轧制力的共同作用下,界面实现了牢固的冶金结合并且最终得到了高质量的不锈钢复合板.研究发现界面无开裂和氧化层,仅在界面附近分布少量细小弥散的Si-Mn氧化物颗粒.通过能谱发现不锈钢侧的Cr和Ni向碳钢迁移,在界面形成一薄层富Cr,Ni层,导致复合层硬度升高;碳钢中的C向不锈钢侧迁移导致出现脱碳区,且该区硬度最低.界面的剪切强度达467MPa.  相似文献   

15.
激光熔覆层网状添加物对裂纹控制的影响   总被引:4,自引:0,他引:4  
激光熔覆是新型表面强化技术,但熔覆层裂纹是限制其应用的主要难题.在熔覆层中加入不锈钢网,降低了熔覆层中的应力值,控制了熔覆层中的裂纹.对3种熔覆材料的实验验证了网丝的加入能有效地降低熔覆层的裂纹率.金相分析显示,随着网丝直径的增大,熔覆层中网丝未完全熔解,它与熔覆材料、基体形成冶金结合,保证了熔覆层的完整性,有效地控制了熔覆层的裂纹.实验工艺显示,对Ni45和Co02这2种粉末,在基体不预热的情况下,这项工艺技术可得到无裂纹的大面积熔覆层.  相似文献   

16.
首道次轧制对复合钢板组织和性能的影响   总被引:1,自引:0,他引:1  
利用真空轧制复合法在不同的首道次轧制压下率下对成分、状态、尺寸等相同的钢板进行了热轧复合,研究了5%,10%,15%三组不同首道次压下率真空轧制复合板的界面组织及Z向力学性能,分析了首道次压下率对复合性能的影响.实验结果表明:随着首道次压下率的增大,界面生成物尺寸逐渐变小,数量减少,形态由长条状逐渐过渡为弥散分布的细小颗粒状;在首道次压下率为15%时,复合板界面已非常洁净;复合板Z向抗拉强度、延伸率、断面收缩率及塑性都随首道次轧制压下率的增大而逐渐改善.  相似文献   

17.
钎焊-热轧法制备高速公路不锈钢复合护栏   总被引:1,自引:0,他引:1  
针对当前高速公路热镀锌护栏存在的主要问题,提出采用不锈钢/碳钢复合板作为新型高速公路护栏材料.研究了钎焊-热轧法制备不锈钢复合护栏的工艺,技术路线为通过炉中钎焊实现不锈钢/碳钢的初结合,对钎焊复合板进行热轧进一步提高结合强度.研究结果表明:采用自制的Ag质量分数为15%的钎料可以实现不锈钢/碳钢有效的钎焊结合,钎焊温度720~730℃,钎焊时间3~4 min是较理想的工艺条件.对钎焊复合板热轧可以显著提高不锈钢/钎料界面的结合强度,压下率低于30%时,轧后钎料层未出现断裂、分层.热轧后,不锈钢复合护栏剪切强度可达338.4 MPa.  相似文献   

18.
异步轧制铜/铝双金属复合板变形行为的研究   总被引:2,自引:0,他引:2  
采用异步轧制复合工艺制备了铜/铝双金属复合板,分析了轧制工艺参数对复合板变形行为的影响,结合轧制变形区金属受力状态探讨了复合过程中的金属变形及流动规律.结果表明:异步轧制变形区内界面摩擦剪切作用直接影响母材的受力状态,共同变形区内双金属间的搓轧作用对金属流动及结合效果影响最大.异步速比越大,硬质金属变形越大.总压下率增大时,组元金属压下率均呈正比关系增加,且软、硬两种金属的压下率差值越来越小.  相似文献   

19.
讨论了异种金属连接的中间层介质选择原则,选择了适合连接不锈钢和铝的中间层介质,并进行了钢板和铝蜂窝芯板的液相扩散连接实验.通过分析结合界面结构和测试界面强度,研究了中间层介质的作用,同时讨论了工艺参数对结合界面区组织和扩散连接过程的影响.结果表明,中间层介质具有良好的润湿和铺展性能,能使不锈钢和铝形成牢固的冶金结合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号