共查询到20条相似文献,搜索用时 15 毫秒
1.
机动目标的模糊多模型跟踪算法 总被引:5,自引:0,他引:5
设计了一种基于模糊逻辑推理的机动目标多模型跟踪新算法(FMMTA),把量测新息对其协方差的逆的加权二次函数作为模糊推理系统的输入,并通过模糊逻辑推理得到模型集中各模型的匹配度,代替了交互式多模型(IMM)算法中的模式概率计算,降低了计算的复杂度。该算法将测量空间的不确定性映射到模糊空间,从而解决了从测量空间的不确定性到模式空间不确定性的模糊推理问题,并将模糊推理与多模型卡尔曼滤波结合,进行并行处理,有利于机动目标的实时跟踪。Monte Carlo仿真结果表明,在模糊规则设计恰当的情况下,FMMTA算法相对于IMM算法在降低机动目标位置和速度的跟踪误差方面更有效。 相似文献
2.
一种新型机动目标跟踪算法——VDQ算法 总被引:1,自引:0,他引:1
目的 研究机动目标跟踪算法。方法 利用广义似然比技术对机动目标进行检测,既确保检测的可靠性,又满足系统实时性的要求。采用变维和估计系统状态相结合的方法,对机动目标进行跟踪,当目标机动较弱时,对系统状态用噪声方差进行估计,避免由于变维法带来的暂态误差。当目标机动较强时,则采用变维法。结果与结论 计算机仿真结果表明,这种新型机动目标跟踪算法具有良好的跟踪性能。 相似文献
3.
利用观测新息在目标机动时发生变化的信息,设计了一种自适应的机动目标跟踪算法,通过对目标状态误差的估计,从而自适应的改变机动频率,使跟踪算法与目标的真实状态更接近,该算法具有运算量小、跟踪精度高、易于工程化实现的特点。 相似文献
4.
将卡尔曼(Kalman)滤波器的变维滤波算法应用于雷达数据处理中,对机动目标进行跟踪,得出机动目标的滤波数据曲线,并对目标进行了拦截仿真。仿真结果表明该方法能估计出目标的运动特征并对运动目标拦截成功。 相似文献
5.
为解决基于“当前”统计模型的自适应滤波器对弱机动,特别是非机动目标跟踪精度下降问题,提出基于模糊神经网络的目标自适应跟踪算法,对并行工作的两滤波器进行数据融合.仿真结果表明:与一般自适应算法相比,该算法对各种机动程度的目标跟踪精度均有不同程度的提高,能更好地适应目标的各种运动形式,尤其适用于对目标的速度和加速度估计精度要求较高的场合,在指控、火控系统中具有实用价值. 相似文献
6.
考虑目标航向机动信息的机动目标跟踪算法 总被引:1,自引:0,他引:1
传统的机动目标跟踪算法大多过于依赖所采用的目标运动模型,没有充分利用目标量测序列中携带的其它有用信息,当目标机动时跟踪性能下降较大。针对该问题,提出了利用目标航向机动序列修正传统跟踪算法滤波值的新算法。仿真结果表明,该算法比传统跟踪算法的跟踪精度高,是一种简单有效的自适应机动目标跟踪算法。 相似文献
7.
针对机动目标有多个运动模型的特点,建立了机动目标的CA模型和CV模型.采用变维滤波(VD)算法对目标运动轨迹进行跟踪,计算机仿真结果表明VD算法对机动目标跟踪具有较高的精度. 相似文献
8.
基于卡尔曼滤波器的运动目标检测与跟踪 总被引:1,自引:0,他引:1
针对摄像机静止的情况,提出了一种可运用于实时监控中的运动目标检测与跟踪的方法.采用更新函数实现背景实时更新,通过差分算法检测运动目标.在跟踪模块中,提出建立帧间目标“关系矩阵”实现多个运动目标匹配,并采用卡尔曼滤波器预测目标参数,在运动目标相互遮挡的情况下,根据预测参数跟踪目标,获得目标轨迹.通过多个图像序列测试,算法具有良好的实时性和适应环境变化的能力. 相似文献
9.
针对目标做转弯机动时产生的运动模式的不确定性问题,提出了基于期望极大化(EM)算法的转弯机动目标跟踪算法,采用转弯速率来描述目标的转弯机动,并将转弯速率作为待估量,用EM算法对转弯速率序列进行估计,从而获得对目标状态的精确估计.最后,给出了该算法的批处理形式和递推形式.新算法有效地提高了目标的跟踪精度.Monte—Carlo仿真表明,与标准的交互式多模型算法相比,批处理EM算法使目标的位置和速度的跟踪精度提高了70%以上,当转弯速率处于稳态时,递推EM算法使目标的位置和速度的跟踪精度提高了20%以上. 相似文献
10.
戴筠 《上海大学学报(自然科学版)》1998,4(4):441-446
本文介绍了用于机动目标跟踪的自适应混合多模算法。这个算法不需要预先定义模型,它利用一个二级卡尔曼滤波器来估计目标的加速度,这个加速度被用于混合多模算法中具有不同确定性加速度的子滤波器中。文中给出了自适应混合多模糊算法的一个计算机模拟结果并和无自适应混合多模算法的结果进行了比较。 相似文献
11.
针对机器人跟踪机动目标,提出了一种完整探测、估计的方法.利用单目视觉定位被跟踪目标的方位,再融合激光数据来获取目标的空间位置.基于"当前"统计模型,将获取到空间位置作为观测信息,采用自适应卡尔曼滤波算法,对机动目标进行跟踪,并准确预测其位置、速度及加速度信息.为验证本方案,使用一个Pioneer 3-AT作为主动机器人,及一个AmigoBot机器人作为被跟踪目标进行实验.结果显示,提议的方案可行,其精度满足实际应用的要求. 相似文献
12.
为了解决常规卡尔曼滤波法存在的不足,给出了用模糊推理系统与卡尔曼法相结合的方法。该方法通过监视理论残差和实际残差的协方差一致程度,应用模糊系统不断调整滤波器的增益系数,对卡尔曼滤波器进行在线自适应控制,最终实现最优估计。通过对INS/GPS组合导航系统的计算机仿真,结果表明该方法是有效、实用的。 相似文献
13.
以目标跟踪为主要目的,对主被动雷达基于改进算法的分布式分层融合进行了仿真研究。仿真研究验证了基于固定指数加权模糊自适应EKF滤波算法的主被动雷达分层融合系统,能够显著提高目标跟踪精度且稳定性好。同时验证了分布式分层融合跟踪性能,明显优越于分布式平均加权融合方法。 相似文献
14.
针对强机动目标跟踪精度不高的问题,提出了一种强机动目标自适应跟踪算法(HMIMM-CV/CAT)。首先通过机动检测区别目标的机动性能,分别应用Kalman滤波和交互多模算法对目标进行跟踪。其次对机动段交互多模算法,给出一组转弯模型离散模型集,在目标机动时通过角速度估计在离散模型集中遴选出一个最匹配的模型参加交互计算,使模型更加逼近目标真实运动模式,且不增加参与交互运算模型数量。蒙特卡罗仿真结果表明,该算法与几种类似算法相比,更加适用于强机动目标。 相似文献
15.
提出一种新的机动输入估计的卡尔曼滤波器,该滤波器利用子波滤波从新息中估计机动造成的附加位移,由此修正卡尔曼滤波器的状态估计,模拟实验表明这一方法比通常的机动输入估计卡尔曼滤波器(IE)具有更好的目标跟踪性能,而计算也更为简便。 相似文献
16.
机动目标的多模型跟踪与预报算法 总被引:3,自引:0,他引:3
刘轩黄 《海南大学学报(自然科学版)》2001,19(2):112-122
以文献 [1]所给严格的最小二乘递推 (R2 LS)算法为基础 ,并结合多模型和模型重新初始化技术 ,提出了一种机动目标的多模型跟踪与预报 (MMTP)算法 .由于该算法中的大量运算可离线完成 ,因而极大地减少了在线计算量 ,使得MMTP算法能满足实时要求 . 相似文献
17.
针对机动目标高机动和多阶段运动的特性,单模型跟踪算法难以实现精确跟踪的问题,提出一种基于模糊逻辑和机动检测的AGIMM跟踪算法。考虑现有的AGIMM算法网格模型收敛速度慢和机动检测方法过于依赖模型后验概率的问题,首先引入模糊逻辑算法计算机动检测的可信度,然后利用机动检测可信度信息、目标的机动信息和模型的后验概率调整跟踪模型集的结构,克服了AGIMM算法模型收敛速度慢的不足,实现了模型与目标运动模式的快速匹配。仿真结果表明:与AGIMM算法和固定结构交互式多模型算法相比,文中提出的算法使得不同条件下的位置跟踪误差分别至少降低5.6%和15.1%,说明该算法具有更快的模型收敛速度和更高的目标跟踪精度。 相似文献
18.
基于模糊信息下的一种多机动目标跟踪算法 总被引:3,自引:1,他引:3
利用估计理论和模糊集理论,在接收信息包含随机性和模糊性的前提下,建立了接收信息下的模糊观测集合.首先推导出模糊最小方差估计公式,然后给出模糊信息下的卡尔曼滤波公式.为避免计算误差导致滤波发散现象,给出实用的模糊信息下的平方根滤波公式.以目标编队飞行和轨迹交叉两种机动情况,进行密集回波下的多目标跟踪仿真验证,获得满意的结果.结果表明,在复杂环境下该滤波公式具有良好的滤波和跟踪性能. 相似文献
19.
一种新的多机动目标跟踪的GMPHD滤波算法 总被引:1,自引:0,他引:1
针对多机动目标跟踪的传统数据关联算法约束条件苛刻、估计精度低、计算量大等问题,提出了一种基于随机集理论的非数据关联的多机动目标跟踪算法.该算法将高斯混合概率假设密度(GMPHD)滤波与"当前"统计模型的优点相结合,绕过了棘手的数据关联问题,能高效处理目标数较大的机动跟踪问题.在漏检、虚警、多机动目标交叉杂波复杂环境下进行了仿真实验,结果表明,该算法具有较高的跟踪精度和稳健的跟踪性能. 相似文献
20.
提出了基于UKF的机动目标跟踪处理方法,能有效抑制动力学模型非线性和观测模型非线性带来的模型误差。和传统EKF滤波方法相比,该方法不仅避免了截断误差造成的滤波发散,而且避免了求解雅克比矩阵,简化计算流程,可以模块化处理,非常适合工程实现。仿真实验表明,当目标呈现明显非线性特征并且大机动运动时,该方法可以有效确定目标轨迹,实现高精度目标跟踪。 相似文献