首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用化学共沉淀法制备了Eu~(3+)、Tb~(3+)、Tm~(3+)单掺,Eu~(3+)、Tb~(3+)共掺,Eu~(3+)、Tb~(3+)、Tm~(3+)三掺的Gd_2(WO_4)_3纳米发光材料,并且研究了其发光性质.结果表明:所制的样品为Gd_2(WO_4)_3的底心单斜结构,Tb~(3+)的摩尔分数为:5%时,Gd2(WO4)3:5%Tb~(3+)的发光最强,此外还发现了Eu~(3+)与Tb~(3+)之间的能量传递现象.在Eu~(3+)、Tb~(3+)、Tm~(3+)三掺杂体系中在353nm光激发下色坐标更为接近白光的标准色坐标值,能够合成比较理想的白光.  相似文献   

2.
利用溶胶-凝胶法和高温固相法制备了双掺杂的Ca_(1.995)Ba_(0.005)Zn_4Ti_(15)O_(36):Pr~(~(3+)),Na~+发光材料(杂质离子为Sm~(3+),Eu~(3+),Gd~(3+),Tb~(3+),Dy~(3+),Tm~(3+)).实验结果表明溶胶-凝胶法制备的前驱体在1 000℃灼烧24 h,与高温固相法在1 200℃灼烧48 h得到的样品相比,溶胶-凝胶法制备样品的发光性质较好.通过测定样品的激发光谱和发射光谱,发现在Ca_(1.995)Ba_(0.005)Zn_4Ti_(15)O_(36)基质中,Sm~(3+),Eu~(3+),Gd~(3+),Tb~(3+),Dy~(3+)和Tm~(3+)的引入增强了Pr~(3+)的红光发射,其中Eu~(3+)的作用最强.Ca_(1.995)Ba_(0.005)Zn_4Ti_(15)O_(36):0.006 Pr~(3+),0.006Na~+,0.004 Eu~(3+)是一种新型红色长余辉发光材料.  相似文献   

3.
采用化学共沉淀法制备了的SrMoO_4:Eu~(3+),Tb~(3+)系列荧光粉体.用X射线衍射(XRD)和扫描电子显微镜(FE-SEM)对荧光粉的结构和形貌进行了表征.研究了样品的光致发光性能,Tb~(3+)到Eu~(3+)的能量传递关系.激发光谱由一个紫外区的宽带峰和可见区的窄带峰构成,可以很好地被紫外LED和蓝光LED激发.通过调整样品的煅烧温度、Eu~(3+)、Tb~(3+)掺杂浓度,可以改变Eu~(3+)、Tb~(3+)的特征发射强度,可以对荧光粉的发光颜色进行调节.经700℃煅烧后SrMoO_4:xEu~(3+),Tb~(3+)荧光粉(x=2.5%,3.5%),在379 nm激发下荧光粉可发射出白光.通过选择合适Eu~(3+)、Tb~(3+)的掺杂浓度、煅烧温度和激发波长可以实现合成白光LED用荧光粉.  相似文献   

4.
采用高温固相反应法合成稀土离子Eu~(3+)掺杂的铌酸锶红色荧光粉,对其晶体结构和荧光性质进行了X射线衍射(XRD)、荧光光谱(PL)的表征,同时研究了共激活剂Bi~(3+)对SrNb_2O_6:Eu~(3+)发光性质的影响.结果表明,在1 200 ℃焙烧后可得到SrNb_2O_6纯相;Sr_(1-x)Nb_2O_6:Eu_x~(3+)荧光粉可以被395 nm近紫外光有效激发,发射峰以Eu~(3+)的5D_0→7F_2(614 nm)电偶极跃迁为最强峰,Eu~(3+) 在SrNb_2O_6中应处于偏离反演对称中心的格位,当x=0.15时,SrNb_2O_6:Eu~(3+)在614 nm处的发光强度最大;共激活剂Bi~(3+)的掺入可以增强SrNb_2O_6:Eu~(3+)荧光粉在325 nm左右激发峰的强度.  相似文献   

5.
该文介绍以Eu~(3+)和Bi~(3+)离子为掺杂剂,以Li_(0.3)Me_(0.4)Al_(0.3)SiO_3为基质(Me=Mg,Ca,Sr,Ba),用高温固相反应合成了含不同碱土金属,不同掺杂种类的硅铝酸盐系列发光体.激发光谱和发射光谱研究结果表明,在该体系中Bi~(3+)对Eu~(3+)具有较好的敏化作用,促进了Eu~(3+)的特征发光.基质中不同的碱土金属离子对Bi~(3+)和Eu~(3+)的发光特性和Bi~(3+)对Eu~(3+)的敏化作用具有明显的影响。当Me=Sr时,激发Bi~(3+)所得到的Eu~(3+)发光以612nm红光为主,并且相对强度较高.在相同激发条件下(395nm),Li_(0.3)BaAl_(0.3)SiO_3:Eu的发射强度是Y(V,P)O_4:Eu~(3+)的2倍.这表明Li_(0.3)BaAl_(0.3)SiO_3是很适合于Eu~(3+)激活的基质材料.  相似文献   

6.
采用共沉淀法制备了无电荷补偿和有电荷补偿SrCaMoO_4:Eu~(3+)/Eu~(3+),Sm~(3+)红色荧光粉,研究了样品的晶体结构和发光性质.结果表明,样品具有白钨矿结构,属于四方晶系,电荷补偿明显增加了红光发射,在Eu~(3+),Sm~(3+)共掺样品中,发现红光的发射也明显增强且存在从Sm~(3+)到Eu~(3+)的能量传递现象.在有电荷补偿的样品中,观测到Eu~(3+)的最佳掺杂浓度为20%.  相似文献   

7.
采用化学共沉淀法制备了荧光粉Ca Mo O4:Tb3+、Ca Mo O4:Eu3+,Tb3+,并对其发光性质进行了研究.Ca Mo O4:Tb3+样品在488nm激发下能发出很强的绿光,此时Tb3+的最佳掺杂浓度为15%;在Eu3+和Tb3+共同掺杂的体系中,可以观察到由于Tb3+向Eu3+的能量传递使Tb3+敏化Eu3+的发光现象.该荧光粉在近紫外光(379nm)激发下发出较强的白色荧光,光谱测试显示Ca Mo O4:Eu3+,Tb3+的发射光谱存在三个激发峰,分别位于488、543和613 nm处,能够合成较理想的白光.  相似文献   

8.
在实验室中,采用溶胶-凝胶法,在较低的温度下,合成出组成为:2.686ZnO-1.6Al_2O_3-5SiO_2:0.05Eu~(3+),0.007Bi~(3+)发光材料.利用X射线小角散射、红外光谱、X射线粉末衍射谱、热重及差热分析,研究了由溶胶→凝胶→发光晶体的转变.采用日本岛津RF-540荧光分光光度计,测量了发光体的激发光谱和发光光谱.讨论了发光体的发光特性及Bi~(3+)对Eu~(3+)的敏化作用.  相似文献   

9.
利用水热法制备了NaGd(MoO4)2:5%Tb~(3+),0. 3%Eu~(3+)荧光粉,通过XRD和电镜图像表征了样品的结构和形貌.为了探究其温度传感性质,测量了样品室温下的激发光谱和发射光谱,以及样品的变温发射光谱,并发现Eu~(3+)(5D0-7F2)与Tb~(3+)(5D4-7F5)的发光强度比(FIR)随温度变化有明显变化,可以用来表征温度.通过FIR计算了样品的温度传感灵敏度,并且发现温度传感灵敏度会随着温度的升高而升高,在503 K时有最大值为0. 077 K-1.此外,利用发射光谱计算了样品的CIE色坐标,通过观察样品的色坐标,发现发光颜色随温度的升高从绿色到红色发生连续的变化,可以直观的表征温度.  相似文献   

10.
采用溶胶-凝胶法制备了稀土Nd~(3+)掺杂的BaTiO_2纳米粉体材料.采用热重法(TG)、X射线衍射(XRD)、傅立叶红外转换光谱(FTIR)等方法对样品进行分析和表征.采用荧光光谱研究材料的光致发光特性.研究不同浓度Nd~(3+)掺杂对于BaTiO_2纳米粉体材料的晶体结构、晶粒尺寸以及频率上转换发光特性的影响规律,并对其发光机制展开了讨论.研究发现,Nd~(3+)掺杂抑制了BaTiO_2晶粒的生长.随着Nd~(3+)替代位置的变化,BaTiO_2的晶格常数出现了相应的改变.此外,该材料体系具有较高的淬灭浓度,达到了10%.  相似文献   

11.
采用化学共沉淀法制备出单掺Mn~(2+),单掺Cr~(3+)以及Mn~(2+),Cr~(3+)双掺的镁铝尖晶石粉体,改变各掺杂离子浓度,对粉体进行XRD、荧光分析。结果表明,单掺Mn~(2+)离子的样品在450nm波长激发下发射520nm的绿光;单掺Cr~(3+)离子的样品在425nm和545nm波长激发下发射694nm的红光;双掺的Mg1-xAl2(1-y)O4:xMn~(2+),yCr~(3+)粉体在激发波长为450nm时得到525nm的绿光和694nm的红光,双掺样品在694nm的红色发射峰由425nm,450nm和525nm共同激发,Mn~(2+)和Cr~(3+)离子之间存在能量传递,二者互为激发中心和敏化中心,随着Mn~(2+)离子和Cr~(3+)离子浓度的增加,发射光谱中发生猝灭时的绿光强度得到提高,红光强度逐渐增加。  相似文献   

12.
采用共沉淀法合成了La2O2S∶Tb3+绿色荧光粉并进行了相关表征.结果表明,合成样品的晶体结构与La2O2S相同,属于六方晶系.颗粒的形貌多为长方形或矩形,结晶性能良好,晶粒大小2~10 μm.发射光谱由波长为490 nm、544 nm、587 nm、621 nm的一系列锐发射峰组成.最佳掺杂浓度x(Tb3+)为0.05 ~0.06.低浓度的Dy3+离子对La2O2S∶Tb3+荧光粉的绿色发光有敏化作用,Dy3+的适宜掺杂浓度x(Dy3+)为0.001 ~ 0.008.  相似文献   

13.
采用高温固相法合成了名义组成为Sr1.5Ca0.5 SiO4:0.01 Eu3+,nTb3+(n =3.0×10-4,7.0×10-4,1.5×10-3 mol)的荧光粉.X射线衍射测试表明荧光粉样品为单一物相.在紫外光(394 nm)激发下,样品同时产生蓝光、绿光和红橙光发射,分别对应于Eu2+离子的5d→4f,Tb3+离子的5 D4→7FJ和Eu3+离子的5D0→7FJ跃迁,表明部分Eu3+离子在还原气氛下被还原成Eu2+.红光、绿光和蓝光发射强度相当,复合得到白光.色坐标(CIE)计算结果显示,荧光粉Sr1.5Ca0.5SiO4:0.01 Eu3+,7.0×10-4 Tb3+的白色发光(CIE:x=0.321,y=0.322)接近纯白色(CIE:x=0.33,y=0.33),表明它是一种很有应用前景的基于紫外光芯片的单基白光荧光粉.  相似文献   

14.
本文讨论了在La_2SO_6:Tb~(3+)中掺入Ce~(3+)后,可以使Tb~(3+)离子~5D_4→~7F_j跃迁显著增强,~5D_3→~7F_j迅速淬灭,因而改变了发射光谱的能量分布,明显增强了绿光发光强度,大大降低了蓝光发光强度,提高了绿光纯度。实验表明,La_2SO_6:Ce~(3+),Tb~(3+)是一种高效绿光磷光体。通过分析,认为体系中Tb~(3+)离子~5D_4→~7F_j跃迁的增强作用是由于Ce~(3+)→Tb~(3+)离子的能量传递所致,其能量传递机理属于非辐射共振能量转移,并存在着多渠道的能量传递过程。在此基础上,建立了敏化发光的动力学方程,得出了该体系含铽及不含铽时,Ce~(3+)离子处于激发态上的粒子数衰减公式以及铈铽双掺杂的能量传递效率表达式。  相似文献   

15.
采用高温熔融法制备了掺Tb3+硅酸盐闪烁玻璃,并加入多种具有敏化功能的稀土离子(Ce3+/Ce4+,Dy3+),通过测量样品的激发光谱和发射光谱研究各种稀土离子对Tb3+发光性能的影响.结果表明:Tb3+掺杂浓度过高时会出现浓度淬灭现象,Tb3+质量分数为10%的样品发光强度最大.空气气氛下熔制的玻璃中同时含有Ce3+和Ce4+,由于Ce4+离子与Tb3+离子存在对能量的竞争吸收,使Tb3+的发光强度减弱.加入适量的Dy3+离子可以敏化Tb3+离子的发光.  相似文献   

16.
通过溶胶凝胶法制备了Gd~(3+)、Ho~(3+)和Yb~(3+)共掺的Y_2O_3纳米晶.随着Gd~(3+)掺杂浓度从0 mol%增加到20 mol%,Ho~(3+)的绿色上转换荧光发射强度明显增强,红色上转换荧光发射强度几乎没有发生变化.当掺杂20 mol%Gd~(3+)时,Ho~(3+)的绿色和红色上转换荧光的抑制比增大到了没掺杂Gd~(3+)时的3倍.透射电镜(TEM)实验表明,绿色上转换荧光强度的增强不是由于晶粒尺寸改变引起的.理论研究和时间寿命实验表明绿色上转换荧光强度的增强来自于Ho~(3+)的5I6能级和Yb~(3+)的2F5/2能级寿命的增加.  相似文献   

17.
用化学共沉淀法制备了Tm3+、Yb3+离子共掺杂的Gd2O3纳米晶上转换荧光粉体.XRD图和SEM表明样品在1000℃、1100℃、1200℃结晶状态良好,都是完整的立方相,制备的样品是纳米粉体.该粉体在波长976 nm(在LD激光器)激发下,观测到稀土离子的可见到近红外室温上转换发射.发光强度和激发功率关系的研究揭示了其光子吸收过程,Tm3+、Yb3+间的能量传递是该上转换发光的主要机制.以Gd2O3为基质掺杂Tm3+和Yb3+的产生的近红外上转换光表明纳米颗粒在生物标识和生物成像方面有着广阔的应用前景.  相似文献   

18.
本文首次报道了缺位K_(10)H_6〔Ln(VW_(10)O_(37))_2〕XH_2O(Ln=La~(3+)、Ce~(3+)、Dr~(3+)、Nd~(3+)、Sm~(3+)、Eu~(3+)、Gd~(3+)、Tb~(3+)、Dy~(3+)、Yb~(3+))10余种配合物的合成方法,元素分析与理论值相符。利用IR、UV、XRD和TG—DTA对配合物进行了表征,配合物的热解性质研究表明,其分解温度为400~450℃,还研究了配合物在水溶液中的稳定性。  相似文献   

19.
采用高温固相法制备以缺陷为发光中心的淡蓝绿色长余辉发光材料M_xZn_(3-0.5x)(PO_4)_2(M=Na,K)。XRD分析结果表明,M_xZn_(3-0.5x)(PO_4)_2的主要衍射峰与α-Zn_3(PO_4)_2的值相吻合。Na_(0.08)Zn_(2.96)(PO_4)_2激发峰位于332 nm处,发射峰在420~550 nm,最大值位于460 nm处,目测余辉时间达4 h。通过热释光曲线表征分析陷阱数量并计算了陷阱深度,分析表明,Na~+掺杂可以增强Zn_3(PO_4)_2在低温处的氧空位缺陷浓度,改善材料的陷阱深度,从而使材料发光。  相似文献   

20.
制备了以GeO2 为基础的 6个Er3 与Yb3 共掺杂样品 ,并测试了它们在 85 8nm半导体激光和 930nm二极管激光激发下的荧光谱 ,测量发现 ,在 930nm二极管激光激发下各样品的荧光强度较之 85 8nm半导体激光激发下的荧光强度普遍要强 ,且Ge4,Ge5两样品较之其余四个样品在两种光源的激发下的绿光段的荧光强度要强的多 ,且用肉眼在白天即可见到很强的绿光 .简单分析了它们的上转换机制 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号