首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
S H Young  M M Poo 《Nature》1983,304(5922):161-163
Plasma membranes are dynamic structures of proteins and lipids. Protein-protein or protein-lipid interactions within the membrane are believed to have important roles in many membrane functions, including ion transport, enzyme activity and signal reception. The acetylcholine (ACh) receptor-channel complex in skeletal muscle membrane is one of the best known integral membrane proteins. Its ion transport function is accessible to direct measurement at the single-channel level by the use of the 'giga-seal' patch recording technique. Here we used an in situ electrophoresis technique to rearrange the topography of pre-existing ACh receptor-channels in the muscle membrane, and measured the single-channel kinetics of ACh-activated channels in two different molecular environments within the membrane: those in the diffusely distributed region and those in the ACh receptor clusters induced by the applied field. We found that the channel kinetics are significantly prolonged in the ACh receptor cluster compared with the non-clustered region of the same cell. This result strongly supports the notion that the function of a membrane ionic channel depends on the local molecular environment.  相似文献   

2.
文章探讨了在基础化学实验教学中将单一实验转化为综合型实验的必要性,并以综合型实验-麻醉剂苯佐卡因合成为例对比了开设综合型实验前后的教学效果。  相似文献   

3.
K Kaila  J Voipio 《Nature》1987,330(6144):163-165
Synaptic inhibition mediated by gamma-aminobutyric acid (GABA) is known to involve opening of receptor-gated chloride channels. Recent evidence indicates that these channels also show a significant permeability to the physiologically important bicarbonate anion. In all the excitable cells studied to date, the intracellular pH (pHi) is higher than would be predicted from a passive distribution of H+ ions, and consequently there is an outwardly directed electrochemical driving force for HCO3-. In the presence of CO2/HCO3- therefore, activation of GABA-gated channels could give rise to a significant efflux of bicarbonate, leading to a fall in postsynaptic pHi. We have examined the influence of GABA on pHi in crayfish skeletal muscle and we find that in the presence of CO2, GABA induces a dramatic fall in pHi which is coupled to an alkalosis at the extracellular surface. This fall in pHi and the extracellular alkalosis are attributable to a GABA-activated, picrotoxin-sensitive HCO3--conductance. In view of the sensitivity of ion channels and intracellular ion concentrations to changes in pHi, a GABA-induced postsynaptic acidosis could prove to be important in the modulation of inhibitory transmission.  相似文献   

4.
Glauner KS  Mannuzzu LM  Gandhi CS  Isacoff EY 《Nature》1999,402(6763):813-817
Voltage-gated ion channels underlie the generation of action potentials and trigger neurosecretion and muscle contraction. These channels consist of an inner pore-forming domain, which contains the ion permeation pathway and elements of its gates, together with four voltage-sensing domains, which regulate the gates. To understand the mechanism of voltage sensing it is necessary to define the structure and motion of the S4 segment, the portion of each voltage-sensing domain that moves charged residues across the membrane in response to voltage change. We have addressed this problem by using fluorescence resonance energy transfer as a spectroscopic ruler to determine distances between S4s in the Shaker K+ channel in different gating states. Here we provide evidence consistent with S4 being a tilted helix that twists during activation. We propose that helical twist contributes to the movement of charged side chains across the membrane electric field and that it is involved in coupling voltage sensing to gating.  相似文献   

5.
P Gardner  D C Ogden  D Colquhoun 《Nature》1984,309(5964):160-162
Hypotheses concerning the mechanism by which acetylcholine-like agonists cause ion channels to open often suppose that the receptor-ionophore complex can exist in either of two discrete conformations, open and shut. On the basis of noise analysis it has been reported that certain agonists open ion channels of lower conductance than usual, though many potent agonists give similar conductances, and hence that differences in the conductance of ion channels opened by different agonists may contribute to differences in efficacy. Here we have reinvestigated this question by recording single ion channel currents evoked by acetylcholine-like agonists on embryonic rat muscle in tissue culture and on adult frog muscle endplate. Ten different agonists (Fig. 1) were tested, including several that noise analysis has suggested have a low conductance. The single-channel conductance was found to be the same, within a few per cent, for all 10 agonists. It seems that noise analysis has given erroneously low conductances in some cases. Therefore efficacy differences do not depend on differences in single-channel conductance evoked by various agonists but presumably on the position of the open-shunt equilibrium of the agonist-channel complexes.  相似文献   

6.
B Sakmann  A Noma  W Trautwein 《Nature》1983,303(5914):250-253
Acetylcholine (ACh) released on vagal stimulation reduces the heart rate by increasing K+ conductance of pacemaker cells in the sinoatrial (S-A) node. Fluctuation analysis of ACh-activated currents in pacemaker tissue showed this to be due to opening of a separate class of K+ channels gated by muscarinic ACh receptors (m-AChRs). On the other hand, it has been suggested that m-AChRs may simply regulate the current flow through inward rectifying resting K+ channels (gk1). We report here the measurement of ACh-activated single channel K+ currents and of resting K+ channel currents in isolated cells of the atrioventricular (A-V) and S-A node of rabbit heart. The results show that the ACh-dependent K+ conductance increase in nodal cells is mediated by K+ channels which are different in their gating and conductance properties from the inward rectifying resting K+ channels in atrial and ventricular cells. The resting K+ channels in nodal cells are, however, similar to those activated by ACh.  相似文献   

7.
5-HT3 receptors are membrane ion channels   总被引:20,自引:0,他引:20  
V Derkach  A Surprenant  R A North 《Nature》1989,339(6227):706-709
The neurohormone 5-hydroxytryptamine (5HT or serotonin) exerts its effects by binding to several distinct receptors. One of these is the M-receptor of Gaddum and Picarelli, now called the 5-HT3 receptor, through which 5-HT acts to excite enteric neurons. Ligand-binding and functional studies have shown that the 5-HT3 receptor is widely distributed in peripheral and central nervous tissue and evidence suggests that the receptor might incorporate an ion channel permeable to cations. We now report the first recordings of currents through single ion channels activated by 5-HT3 receptors, in excised (outside-out) membrane patches from neurons of the guinea pig submucous plexus. Whereas application of acetylcholine activated predominantly a 40-pS channel, 5-HT caused unitary currents apparently through two channels of conductances of 15 and 9 pS, which were reversibly blocked by antagonists of the 5-HT3 receptor. Receptors for amine neurotransmitters, including 5-HT1 and 5-HT2, have previously been thought to transduce their effects through GTP-binding proteins: the direct demonstration that 5-HT3 receptors are ligand-gated ion channels implies a role for 5-HT, and perhaps other amines, as a 'fast' synaptic transmitter.  相似文献   

8.
Volatile general anaesthetics activate a novel neuronal K+ current   总被引:13,自引:0,他引:13  
N P Franks  W R Lieb 《Nature》1988,333(6174):662-664
Although it is still controversial whether the primary target sites underlying general anaesthesia are proteins or lipids, it is generally thought that the ultimate targets are ion channels in nerve membranes. One approach to finding these targets is to study the effects of general anaesthetics on identified neurons, where differential effects on neuronal activity can be pursued to the molecular level. Here we report that amongst a group of apparently identical molluscan neurons having endogenous firing activity, a single cell displays an unusual sensitivity to volatile agents (which, at surgical levels, completely inhibit its activity). We further show that this sensitivity is due to a novel anaesthetic-activated K+ current, which is found in the sensitive cell but not in the surrounding insensitive cells. This K+ conductance is not appreciably voltage-gated and persists for as long as the anaesthetic is present. The response to anaesthetics is completely reversible and saturates at low anaesthetic partial pressures: the half-maximal response for halothane occurs at 0.0063 atm, close to its minimum alveolar concentration (0.0075 atm) in man.  相似文献   

9.
采用分子动力学方法模拟了水溶液中单壁碳纳米管(single-walled carbon nanotubes,SWNTs)与由蛋白质中功能基团功能化的自组装单层膜(self-assem bled monolayers,SAMs)的相互作用.研究结果显示由于水分子的溶剂化效应,单壁碳纳米管(SWNTs)与带电荷的SAMs相互作用能量为零.SWNTs与不带电荷的SAMs可以相互吸附,而影响二者吸附的因素中范德华作用占主导地位.同时通过质心距离分析也证明了功能化基团的种类及电离状态对SAMs与SWNTs的相互作用存在影响,并验证了蛋白质原子和SWNTs的有效相互作用距离.  相似文献   

10.
A Rozov  N Burnashev 《Nature》1999,401(6753):594-598
At many glutamatergic synapses in the brain, calcium-permeable alpha - amino - 3 - hydro - 5 - methyl - 4 - isoxazolepropionate receptor (AMPAR) channels mediate fast excitatory transmission. These channels are blocked by endogenous intracellular polyamines, which are found in virtually every type of cell. In excised patches, use-dependent relief of polyamine block enhances glutamate-evoked currents through recombinant and native calcium-permeable, polyamine-sensitive AMPAR channels. The contribution of polyamine unblock to synaptic currents during high-frequency stimulation may be to facilitate currents and maintain current amplitudes in the face of a slow recovery from desensitization or presynaptic depression. Here we show, on pairs and triples of synaptically connected neurons in slices, that this mechanism contributes to short-term plasticity in local circuits formed by presynaptic pyramidal neurons and postsynaptic multipolar interneurons in layer 2/3 of rat neocortex. Activity-dependent relief from polyamine block of postsynaptic calcium-permeable AMPARs in the interneurons either reduces the rate of paired-pulse depression in a frequency-dependent manner or, at a given stimulation frequency, induces facilitation of a synaptic response that would otherwise depress. This mechanism for the enhancement of synaptic gain appears to be entirely postsynaptic.  相似文献   

11.
:Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.  相似文献   

12.
M C Nowycky  A P Fox  R W Tsien 《Nature》1985,316(6027):440-443
How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.  相似文献   

13.
Plasma membrane phosphoinositide organization by protein electrostatics   总被引:1,自引:0,他引:1  
McLaughlin S  Murray D 《Nature》2005,438(7068):605-611
Phosphatidylinositol 4,5-bisphosphate (PIP2), which comprises only about 1% of the phospholipids in the cytoplasmic leaflet of the plasma membrane, is the source of three second messengers, activates many ion channels and enzymes, is involved in both endocytosis and exocytosis, anchors proteins to the membrane through several structured domains and has other roles. How can a single lipid in a fluid bilayer regulate so many distinct physiological processes? Spatial organization might be the key to this. Recent studies suggest that membrane proteins concentrate PIP2 and, in response to local increases in intracellular calcium concentration, release it to interact with other biologically important molecules.  相似文献   

14.
B Sakmann  J Patlak  E Neher 《Nature》1980,286(5768):71-73
High resolution measurements of the current through individual ion channels activated by acetylcholine (AChR- channels) in frog muscle have shown that these currents are discrete pulse-like events with durations of a few milliseconds. Fluctuation and relaxation measurements of end-plate currents have led to the conclusion that the rate of channel opening increases with agonist concentrations, and that the channel, once open, closes spontaneously. Katz and Thesleff have shown, however, that in the continued presence of ACh, the initial end-plate current declines to an equilibrium value with a time constant of several seconds. This reversible phenomenon is referred to as receptor desensitization. We report here that in the presence of ACh concentrations sufficient to cause desensitization, single channel current pulses appear in groups. From the temporal sequence of the pulses, we have derived estimates of the rates of activation and desensitization of the AChR-channel.  相似文献   

15.
Turecek R  Trussell LO 《Nature》2001,411(6837):587-590
Glycine and GABAA (gamma-aminobutyric acid A) receptors are inhibitory neurotransmitter-gated Cl- channels localized in postsynaptic membranes. In some cases, GABAA receptors are also found presynaptically, but they retain their inhibitory effect as their activation reduces excitatory transmitter release. Here we report evidence for presynaptic ionotropic glycine receptors, using pre- and postsynaptic recordings of a calyceal synapse in the medial nucleus of the trapezoid body (MNTB). Unlike the classical action of glycine, presynaptic glycine receptors triggered a weakly depolarizing Cl- current in the nerve terminal. The depolarization enhanced transmitter release by activating Ca2+ channels and increasing resting intraterminal Ca2+ concentrations. Repetitive activation of glycinergic synapses on MNTB neurons also enhanced glutamatergic synaptic currents, indicating that presynaptic glycine receptors are activated by glycine spillover. These results reveal a novel site of action of the transmitter glycine, and indicate that under certain conditions presynaptic Cl- channels may increase transmitter release.  相似文献   

16.
A variety of ligand-gated ion channels undergo a fast activation process after the rapid application of agonist and also a slower transition towards desensitized or inactivated closed channel states when exposure to agonist is prolonged. Desensitization involves at least two distinct closed states in the acetylcholine receptor, each with an affinity for agonists higher than those of the resting or active conformations. Here we investigate how structural elements could be involved in the desensitization of the acetylcholine-gated ion channel from the chick brain alpha-bungarotoxin sensitive homo-oligomeric alpha 7 receptor, using site-directed mutagenesis and expression in Xenopus oocytes. Mutations of the highly conserved leucine 247 residue from the uncharged MII segment of alpha 7 suppress inhibition by the open-channel blocker QX-222, indicating that this residue, like others from MII, faces the lumen of the channel. But, unexpectedly, the same mutations decrease the rate of desensitization of the response, increase the apparent affinity for acetylcholine and abolish current rectification. Moreover, unlike wild-type alpha 7, which has channels with a single conductance level, the leucine-to-threonine mutant has an additional conducting state active at low acetylcholine concentrations. It is possible that mutation of Leu 247 renders conductive one of the high-affinity desensitized states of the receptor.  相似文献   

17.
Ramu Y  Xu Y  Lu Z 《Nature》2006,442(7103):696-699
Voltage-gated ion channels in excitable nerve, muscle, and endocrine cells generate electric signals in the form of action potentials. However, they are also present in non-excitable eukaryotic cells and prokaryotes, which raises the question of whether voltage-gated channels might be activated by means other than changing the voltage difference between the solutions separated by the plasma membrane. The search for so-called voltage-gated channel activators is motivated in part by the growing importance of such agents in clinical pharmacology. Here we report the apparent activation of voltage-gated K+ (Kv) channels by a sphingomyelinase.  相似文献   

18.
Lee SY  MacKinnon R 《Nature》2004,430(6996):232-235
Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane-protein interface.  相似文献   

19.
L M Grover  T J Teyler 《Nature》1990,347(6292):477-479
Long-term potentiation (LTP) of excitatory synaptic transmission could be a mechanism underlying memory. Induction of LTP requires Ca2+ influx into postsynaptic neurons through ion channels gated by NMDA (N-methyl-D-aspartate) receptors in hippocampus (area CA1 and dentate gyrus) and neocortex. Here we report that a component of LTP not requiring the activation of NMDA receptors can be induced in area CA1. The component is dependent on tetanus frequency, requires increases in postsynaptic intracellular Ca2+ concentrations, and is suppressed by an antagonist of voltage-dependent Ca2+ channels.  相似文献   

20.
通过探讨记录细胞离子通道中的离子电流来反映细胞膜单一或多个离子通道分子活动的膜片钳技术和工作原理,以及其在中药单一提取成分、中药单味药以及中药复方研究中的应用,为中药在不同应用情况下的药效分析和研究提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号