首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
对径向滑动轴承、推力滑动轴承试验台以及实验台的结构设计、试验范围、功能和工业产品实验进行了介绍。该试验台在滑动轴承的实验研究中得到了很好的应用。  相似文献   

2.
3.
考虑瞬态冲击和弹性变形的滑动轴承特性与动力学响应   总被引:1,自引:1,他引:1  
同时考虑瞬态冲击载荷和轴瓦的弹性变形,模拟了舰船在风浪拍击时推进轴支承滑动轴承的润滑特性与动力学响应,研究了聚四氟乙烯(PTFE)弹性金属塑料瓦滑动轴承的最小油膜厚度、最大油膜压力和轴心轨迹随时间的变化情况。运用有限元法求解雷诺方程,将油膜力转化为轴瓦节点力计算了弹性变形;用欧拉法求解轴颈的动力学方程,计算了动态轴心轨迹。对比了刚性瓦与PTFE弹塑瓦滑动轴承的特性,结果表明,轴瓦弹性变形对油膜厚度和油膜压力分布的影响不可忽略,并且轴瓦弹性变形可以提高滑动轴承的承载能力。对比分析了4个不同方向瞬态冲击载荷作用下PTFE弹塑瓦滑动轴承的特性和轴颈的动态轴心轨迹,提出可通过改变轴承静载荷方向、减小瞬态冲击载荷方向与轴承偏心方向的夹角来增加最小油膜厚度,降低最大油膜压力,减小动态轴心轨迹的位移响应振幅,进而改善滑动轴承润滑状态,减小轴瓦的弹性变形量,提高轴承-转子系统的稳定性。  相似文献   

4.
为分析局部磨损和空化效应对径向滑动轴承混合润滑性能的影响,基于平均Reynolds方程及JFO空化边界条件建立了计入局部磨损的轴承混合润滑模型,通过数值求解研究了不同磨损深度对轴承油膜厚度分布、平均流体动压力分布、轴心位置和Stribeck曲线的影响。结果表明:局部磨损显著改变了油膜厚度分布和平均流体动压力分布;大磨损深度导致轴心位置改变,偏离原来设计;小磨损深度降低了轴承混合润滑阶段的摩擦系数,且能以更低的速度从混合润滑过渡到流体动压润滑;摩擦系数随着磨损深度的增加而增大。  相似文献   

5.
为了研究高速水润滑条件下具有不同边界滑移表面的径向滑动轴承的摩擦学特性,运用二元滑移理论建立了相应的数学模型。模型考虑了流体边界的滑移效应,对经典雷诺方程进行了修正,并将流量守恒边界条件应用于空化区。通过仿真对比不同滑移表面对轴承性能的影响,以大承载力和小摩擦阻力为设计目标,对轴承及滑移表面参数进行了优化设计。结果表明:对于偏心率较小、宽度较小和直径较大的轴承,滑移-非滑移间隔表面能显著地提高承载力,降低摩擦阻力和减小空化区面积;当滑移区域与非滑移区域的分界线在普通轴承压力峰值和最小膜厚位置之间时,承载力可达到最大值。  相似文献   

6.
边界滑移对EMP径向滑动轴承性能的影响分析   总被引:1,自引:0,他引:1  
弹性金属塑料瓦(EMP)径向滑动轴承是一种新型的轴承,轴瓦材料的特殊性使其热变形远大于普通金属瓦轴承,但它所特有的边界滑移现象,对改善径向滑动轴承的润滑性能有较为明显的优越性,该文建立了计入边界滑移情况后对轴承3D热弹流分析的数学模型,并给出实例,对其润滑机理进行了初步的分析。  相似文献   

7.
本文根据含有小气泡的油气两相流体的物理特性,建立了湿空气和油的两相流体润滑膜物理模型,以及径向滑动轴承的润滑基本方程,同时采用SIP法求解了上述方程,并对径向滑动轴承的性能进行了计算、分析。  相似文献   

8.
对于高速、动载、径向滑动轴承的油膜压力及轴心轨迹的计算,一般沿用Hahu或Holland 的分项计算方法.将挤压油膜压力与旋转油膜压力分别计算,然后叠加.可是,对于重载轴承,油膜压力的峰值较高,轴承的弹性变形不可忽视,润滑油的粘压效应亦较突出.这时,雷诺方程将成为一个非线性微分方程,不能沿用上述方法计算.本文应用等参数有限元法,系统地提出了一个整体的计算方法,预示了动载轴承的油膜压力、轴心轨迹和最小油膜厚度.为了符合变形的真实情况,本文对轴承的变形,尤其是两端的影响,在运用半无限空间弹性体的结论时,也作了适当的修正.  相似文献   

9.
基于Reynolds方程对表面有缺陷的径向滑动轴承进行理论建模并开展数值模拟,获得表面有缺陷的轴承润滑过程中油膜厚度、压力分布。研究不同尺度和不同分布形式的缺陷对径向滑动轴承润滑状态的影响。结果表明,缺陷的周向位置对润滑状态的影响最大。缺陷位于滑油出口范围之前,轴承的承载力减小,摩擦因数增大;缺陷位于滑油出口之后,可形成附加楔形效应,使承载力增大,摩擦因数降低。缺陷宽度增加则会扩大以上因素的影响程度。缺陷的轴向位置对轴承润滑状态影响不大,但当缺陷在滑油出口之前且靠近轴承边缘时会明显降低承载力。  相似文献   

10.
计及轴变形导致轴颈倾斜的滑动轴承   总被引:1,自引:0,他引:1  
设计研制了轴-滑动轴承系统专用试验装置,对轴受载荷作用产生变形,导致轴颈在轴承孔中倾斜时滑动轴承的润滑性能进行了试验研究;结果表明,轴变形导致轴颈倾斜时,滑动轴承的油膜压力、油膜厚度和温度的分布状况及数值发生了明显变化;轴受载越大,其变形产生的轴颈倾斜越严重,对滑动轴承润滑性能的影响越明显。  相似文献   

11.
提出了轴颈圆周、径向和轴向三维运动状态下滑动轴承润滑分析的Reynolds方程,研究分析了轴颈轴向运动对滑动轴承的摩擦学性能的影响.计算结果表明,轴向运动的存在,对轴承油膜压力分布、轴承承载量、摩擦系数、维持力矩和端泄流量等摩擦学性能都有着较显著的影响.  相似文献   

12.
三油楔固定瓦滑动轴承启动过程的性能   总被引:6,自引:0,他引:6  
以三油楔固定瓦滑动轴承为研究对象,采用有限差分法数值求解Reynolds方程,研究了轴承启动过程、轴颈中心的运动轨迹以及轴承的动特性和稳定性在该过程中的变化规律。根据启动过程角速度不断提高,轴承对应的量纲一承载力不断减小的特点,得出承载力和轴承宽径比对轴承轴颈轨迹、动特性和稳定性影响的一系列曲线。结果表明:在启动过程,随着转动角速度的提高,轴承稳定性降低;减小宽径比有利于轴承稳定性的提高。  相似文献   

13.
针对所提出的一种锯齿形多槽式动静压气体的润滑轴承,研究了轴承主要设计参数对稳态和动态特性的影响规律,得出了一般的设计原则。  相似文献   

14.
分析了椭圆和齿形两种轴颈圆度误差对滑动轴承润滑性能的影响机理,推导了考虑轴颈圆度误差时的油膜厚度公式;针对某滑动轴承,分析了不同轴颈圆度误差与轴承油膜厚度、油膜压力、摩擦功耗、端泄流量和轴心轨迹之间的关系.结果表明,两种圆度误差都明显导致滑动轴承的润滑性能下降;椭圆误差改变滑动轴承的油膜承载区面积,部分时间可能改善轴承的润滑性能;齿形误差引起滑动轴承周期性的油膜波动,使油膜压力呈多峰分布.  相似文献   

15.
本文用伽略金法对油腔式动滑动轴承建立有限元的数学模型,使流量平衡方程,雷诺方程及压力降方程同时求解,在提高精度的同时使得复杂边界的润滑问题能用统一的数学模式表达,讨论了油腔式滑动轴承的动特性,用摄动理论建立扰动压力方程,为求解带来了方便本文的 计算结果与有限差分的计算结果具有较好的合,分析结果表明有用有限元法解决几何形状复杂的润滑问题是行之有效的。  相似文献   

16.
提出一种新的求解径向滑动轴承雷诺方程的算法——块不完全分解 (BIF)快速迭代算法 ,分析了影响该算法求解精度的几种因素 .通过大量的数值试验 ,在迭代步数、计算时间上与 SOR法进行了比较 .  相似文献   

17.
通过试验,探讨了可变阻抗滑动轴承的凹槽与缓冲器对轴承的承载力和静态工作特性的影响,结果表明,凹槽与缓冲器并不影响轴承的承载能力和运行位置.  相似文献   

18.
低速工况下处于混合润滑状态的滑动轴承易因变形或倾斜而发生磨损。为分析轴颈倾斜和磨损对滑动轴承混合润滑特性的影响,建立了计入轴颈倾斜和弹性变形的平均流量方程、G-T接触方程和Archard磨损方程耦合模型,采用有限差分法及超松弛迭代法计算混合润滑状态下轴承特性参数和时变磨损参数,对比了轴颈倾斜前后或磨损前后轴承的润滑性能,并分析粗糙度和边界摩擦系数等因素对各性能参数的影响。搭建摩擦磨损试验台测试了倾斜状态下轴承的润滑特性,验证了理论模型的正确性。理论分析与试验结果表明:重载大偏心时轴承转变为混合润滑状态,轴颈倾斜程度越大,轴承越容易发生混合润滑;轴承倾斜后,压力峰值和接触区域形状发生改变,磨损量因而发生变化,并且磨损深度分布沿轴向或周向倾斜;磨损降低了油膜的动压效应,并且使膜厚比降低,导致油膜压力峰值下降约20%,接触压力峰值降低约90%,承载力最高下降约19.71%;对比磨损前后的轴承形貌发现,轴颈倾斜使得磨损集中于间隙减小的一端。该研究可为实际工程中轴承的设计提供理论依据。  相似文献   

19.
用短轴承理论近似分析有限长轴承,只适用于宽径比比较小的情况,在短轴承理论基础上的结合Galerkin方法首次给出了有限长轴承非稳态油膜力的近似公式,既保留了由短轴承理论所给出公式的简单性,又使其在很大宽径比范围内具有很高的精度,以满足工程的需要,最后进行了实例计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号