首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究了上三角算子矩阵广义Drazin谱的极限点的填洞问题,并在此基础上给出了使得accσgD(MC)=accσgD(A)∪accσgD(B)成立的充分条件,其中A∈B(X),B∈B(Y),C∈B(Y,X)且■  相似文献   

2.
设Mc=(AC0B)∈B(X⊕Y)为定义在Banach空间X⊕Y上的上三角算子矩阵.讨论Mc的Weyl谱σw与左(右)Weyl谱σlw(σrw)的填洞情况,证明了:σ*(A)∪σ*(B)=σ*(Mc)∪W,其中,W是σ*(Mc)的某些洞的并,σ* ∈{σw,σlw,σrw},分别找出了W的具体位置.  相似文献   

3.
研究了无穷维复可分Hilbert空间中的2×2无界上三角算子矩阵■是满射、下方有界及可逆的充要条件,进而得到了等式σ*(T)=σ*(A)∪σ*(D)成立的充要条件,其中σ*∈{σδap,σ}。这些结论推广了Du,Han及Barraa等学者在有界算子矩阵的情形下给出的充分条件。作为应用,给出了对角占优的上三角无穷维Hamilton算子可逆及谱等式成立的充要条件,并辅以实例佐证。  相似文献   

4.
Banach空间上算子谱的精细划分   总被引:1,自引:0,他引:1  
给出巴拿赫空间上算子谱的精细划分,证明了巴拿赫空间上的算子T有σ0p(T)=ψ0(T)∩(T),σ(T)=σB(T)∪σ0p(T)=σW(T)∪(ψ0(T)∩σ(T)0)∪σ0p(T).  相似文献   

5.
算子矩阵:单值扩张性与Browder谱   总被引:1,自引:0,他引:1  
设X,Y是给定的Banach空间,对A∈B(X),B∈B(Y),C∈B(Y,X),以MC记XY上的算子{A C/0 B}.利用局部谱理论的工具给出关于A,B成立σ*(Mc)=σ*(A)∪σ*(B)(σ*∈{αb,σw,σD})的一些充分条件,同时给出例子说明所给的充分条件不同于Djordjevic S.V.,Zguitti H.和Zhang Y.N.等人所给的充分条件.  相似文献   

6.
设X,Y是复的Banach空间,在一个上三角算子矩阵Mc=A C0 B∈B(XY)中,A∈B(X),B∈B(Y)是事先给定的,对于任意的C∈B(Y,X),Mc的左(右)Browder谱:lσb(Mc)={λ∈C:Mc)-λB (XY)},B (XY)={T∈Φ (XY):asc(T)<∞},(rσb(Mc)={λ∈C:Mc)-λ■B-(XY)},B-(XY)={T∈Φ-(XY):des(T)<∞}).文中得到lσb(Mc)(rσb(Mc))与lσb(A)∪lσb(B)|rσb(A)∪rσb(B))之间存在有趣的填洞现象,即σ*(A)∪σ*(B)=σ*(Mc)∪W.其中,W是σ*(Mc)的某些洞的并σ*∈{lσb,rσb},并找出洞W的具体位置.  相似文献   

7.
令H为无限维复可分的Hilbert空间,B(H)为H上有界线性算子的全体.称算子T∈B(H)满足Browder定理,若σ(T)\σw(T)?π00(T)或σw(T)=σb(T);若σ(T)\σw(T)=π00(T),称T满足Weyl定理,其中σ(T),σw(T),σb(T)分别表示算子T的谱集、Weyl谱、Browder谱,π00(T)={λ∈iso σ(T):0相似文献   

8.
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)σab(T)=π00(T),其中π00(T)={λ∈iso σ(T)∶0相似文献   

9.
设A为Hilbert空间H上的有界线性算子, 若任给B∈B(H),有 σe(AB)=σe(BA),则称 A为一个一致Fredholm算子(简写为CF算子)或者称算子A具有CF性质, 其中σe(·)表示本质谱。 给出了算子具有CF性质的充要条件, 并且考虑了算子的紧摄动的CF性质;研究了算子矩阵的CF性质。  相似文献   

10.
令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。  相似文献   

11.
设Mc=(A C 0 B)∈B(X( )Y)为定义在Banach空间X( )Y上的上三角算子矩阵.讨论了Mc的左(右)谱σl(σr),左(右)本性谱σle(σre)和本性谱σe的填洞问题.  相似文献   

12.
设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体, T∈B(H)称为满足(R)性质,若σa(T)\σab(T)=π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和Browder本质逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}。 利用拓扑一致降标性质,首先给出了有界线性算子满足(R)性质的充要条件; 之后通过拓扑一致降标性质,得到了算子函数满足(R)性质的判定方法; 最后,上三角算子矩阵的(R)性质得到了研究。  相似文献   

13.
令σek(T)=σe(T)∪σk(T)为算子T的Kato本质谱,其中σe(T)和σk(T)分别表示算子T的本质谱以及Kato谱。研究了Hilbert空间H⊙K上的上三角算子矩阵MC=[0ACB]的Kato本质谱摄动。  相似文献   

14.
研究了Hilbert空间X⊕X中的无穷维Hamilton算子HC=[A C 0 -A*]和HF=[A F B -A*]的纯虚谱的扰动,其中R(B)是闭的.给定算子A,B,证明了∩C∈S(X)σi(HC)=σiπ(A),∪C∈S(X)σi(HC)=σi(A),∩F∈S(X)σi(HF)=σiπ(APR(B)⊥),∪F∈S(X)σi(HF)=σi(APR(B)⊥),其中σi(T),σiπ(T),PM和S(X)分别表示T的纯虚谱,纯虚近似谱,全空间到M的正交投影和X中的所有自伴算子所成之集.  相似文献   

15.
本文总假设H是Hilbert空间,B(H)表示H上的全体有界线性算子,若A,B∈B(H),我们分别用σ(A)与σ_r,(A)表示A的谱和剩余谱;R(A)表示A的值域空间;Jacobson对两个算子的乘积的谱得如下引理.σ(AB)\{0}=σ(BA)\{0}。我们知道一般来说不一定有σ(AB)=σ(BA),本文主要讨论σ(AB)=σ(BA)的条件。  相似文献   

16.
设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。  相似文献   

17.
Toeplitz算子谱的精密结构   总被引:1,自引:0,他引:1  
研究Hardy空间H2(Γ)上Toeplitz算子Tφ的谱的结构,利用算子谱的精密结构的分析方法,得到Toeplitz算子Tφ的谱σ(Tφ)、本质谱σe(Tφ)、Weyl谱σw(Tφ)、左本质谱σle(Tφ)、Kato谱σk(Tφ)、值域非闭谱σd(Tφ)、点谱σp(Tφ)等的结构.  相似文献   

18.
令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0相似文献   

19.
对于A、B、C均为给定算子的一般上三角算子矩阵(A C0B),给出了算子矩阵是单射、满射、值域稠的等价条件.然后,将结论进一步推广,利用空间分解方法,刻画了当C具有闭值域时二阶算子矩阵(A CDB)的谱、点谱、连续谱和剩余谱.  相似文献   

20.
Banach空间上有界线性算子的广义谱分析   总被引:1,自引:0,他引:1  
在文献[1]的基础上,进一步在Banach空间上讨论了有界线性算子T的广义谱集σG(T),证明了当λ∈σR(T)∪σP(T)时R(Tλ)闭,则σG(T)即为经典谱分类中的T的连续谱集σC(T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号