首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
采用双螺杆熔融挤出工艺制备了碳纳米管(CNT)与聚对苯二甲酸乙二醇酯(PET)复合材料,研究了CNT含量对复合材料电学性能、热稳定性及力学性能的影响。结果表明:CNT含量为0.5 wt%时复合材料表面电阻急降至10~5ohm/sq以下,达到复合材料的渗流阈值。经扫描电子显微镜(SEM)观察发现,CNT在基体塑料中形成了均匀分散的网络,构建了良好的导电通道;碳纳米管的引入能够有效地提高复合材料的热稳定性,并随着CNT含量的提高而提高;复合材料的力学性能随着CNT添加量的提高先增加后降低,当添加0.5 wt%的CNT时,复合材料拉伸强度达到最大的42.28 MPa,相比于未添加CNT的PET提高15.92%。  相似文献   

2.
为获得性能优良的复合材料,利用辐射交联和喷雾干燥法,制备全硫化交联碳纳米管(CNT s)/粉末丁苯橡胶(SBR)复合材料,用熔融共混法对聚丙烯进行三元体系改性。结果表明:当SBR、CNT s和苯甲酸钠(相对于纯PP的质量)用量分别为15%、2%和2%时,改性后PP的冲击韧性提高了120%,拉伸强度提高了6%,扯断伸长率提高了55%,弯曲强度提高了20%。  相似文献   

3.
Co修饰碳纳米管促进的Cu-ZrO2催化剂上CO2加氢制甲醇   总被引:3,自引:1,他引:2  
利用微波助多元醇化学还原沉积法,制备一类Co修饰的多壁碳纳米管(CNT)基复合材料(y%Co/CNT),进而用其作为添加剂,制备共沉淀型y%Co/CNT促进的Cu-ZrO2催化剂,CuiZrj-x%(y%Co/CNT).Co对CNT的修饰明显地提高了该催化剂对CO2加氢制甲醇的催化活性.在Cu1Zr1-10%(4.3%Co/CNT)催化剂上,5.0 MPa,513 K,V(H2)/V(CO2)/V(N2)=69/23/8,GHSV=8 000 mL/(h·g)的反应条件下,CO2加氢的转化频率(TOF,即单位时间(s)内在单个表面活性金属Cu0位上CO2加氢转化的分子数)达2.89×10-3s-1,是相同条件下非促进的原基质Cu1Zr1和单纯CNT促进的对应物Cu1Zr1-10%CNT上这个值(2.36×10-3s-1和2.40×10-3s-1)分别的1.22和1.20倍;在CO2加氢产物中甲醇的C-基选择性为~92%,时空产率达176 mg/(h·g-cat.).催化剂的表征研究显示,Co修饰CNT促进的催化剂对H2优良的吸附活化性能对CO2加氢转化频率(TOF)的显著提高起着重要作用.  相似文献   

4.
聚苯乙炔/碳纳米管复合材料的制备及导电性   总被引:2,自引:0,他引:2  
以无水A lC l3为催化剂合成了聚苯乙炔(PPA)、用浓H2SO4进行磺化改性,并通过共混制得了PPA/碳纳米管(CNT)及磺化PPA/CNT复合材料;研究了复合材料的导电性及电导率与CNT含量的关系。结果表明:磺化PPA/CNT导电阈值比PPA/CNT的降低了1%,前者达到极限电导率所需CNT的量是后者的10%;X-射线衍射(XRD)测试表明,在CNT界面上的磺化PPA有新的晶型产生。  相似文献   

5.
将改性磷石膏晶须与高密度聚乙烯(High density polyethylene,HDPE)进行共混,通过注塑成型技术制备HDPE/磷石膏晶须复合材料,采用傅立叶转换红外光谱(FI-IR)、扫描电镜(SEM)、热分析(DSC)等技术,分析改性磷石膏晶须对HDPE复合材料力学性能的影响。结果表明:改性后HDPE/磷石膏晶须复合材料的冲击强度、拉伸强度和弯曲强度分别为44.33 k J/m2、25.54 MPa和473.5 MPa,与纯HDPE相比,相应提高了31.5%、6.64%和25.15%;与未改性HDPE/磷石膏晶须复合材料相比,冲击强度提高69.13%,拉伸强度与弯曲强度分别降低1.28%和9.65%。故改性后HDPE/磷石膏晶须的综合性能较好。  相似文献   

6.
通过对多壁碳纳米管进行表面处理,用超声分散和模具浇注成型法制备了碳纳米管/环氧树脂纳米复合材料。研究了碳纳米管含量和表面处理对碳纳米管/环氧树脂复合材料力学性能和断面形貌的影响,分析了碳纳米管对环氧树脂的增强机理。结果表明,随着碳纳米管含量的增加,碳纳米管/环氧树脂复合材料的拉伸强度和弯曲强度及模量先增加后减小;当碳纳米管的质量分数为0.5%时,复合材料的拉伸强度、弯曲强度和弯曲模量分别达到最大值69.8MPa、136.9MPa和3.72GPa,比纯环氧树脂提高了33.9%、29.3%和4.8%;当碳纳米管的质量分数为1.5%时,拉伸模量达到最大值2050.5MPa,比纯环氧树脂提高了7.3%。  相似文献   

7.
研究了乙基纤维素(EC)电纺纤维调控PDMS/CNT柔性复合材料的力学和电学性能.结果表明,引入电纺EC纤维后,PDMS/CNT柔性复合材料的拉伸强度从1.73 MPa提高至3.97 MPa,断裂应变由86.56%提高到115.00%,韧性由0.61 MJ·m-3提高到1.58 MJ·m-3;有缺口PDMS/CNT柔性复合材料的拉伸强度从0.34 MPa提高至1.57 MPa,断裂应变由18.85%提高到27.54%,韧性由0.04 MJ·m-3提高到0.27 MJ·m-3;导电电阻由550 kΩ下降至228 kΩ,导电性上升.基于EC电纺纤维调控的PDMS/CNT复合材料组装的应力传感器灵敏度和循环稳定性获得了有效提升,引入1 wt%EC电纺纤维后,柔性应力传感器的灵敏度从0.341 kPa-1提高至4.922 kPa-1,提升了14倍,引入电纺EC纤维后的传感器循环电阻变化率曲线变得相对更加规整,异常波动更小.  相似文献   

8.
为分析引发剂对硅烷偶联剂的协同效应,以高密度聚乙烯(HDPE)薄膜为胶黏剂,乙烯基三甲氧基硅烷(A-171)和引发剂过氧化二异丙苯(DCP)为杨木单板的改性剂,制备硅烷化杨木单板/HDPE薄膜复合材料。分别采用力学试验机、动态力学分析仪(DMA)和冷场发射扫描电子显微镜分析引发剂DCP用量(0、0.05%、0.10%、0.15%)对复合材料物理力学性能的影响。结果表明:在引发剂DCP的诱导下,硅烷化杨木单板与HDPE薄膜发生了化学交联反应,形成了优良的胶接结构,硅烷化杨木单板/HDPE薄膜复合材料的力学性能、耐水性能和耐高温破坏性能都显著增强。当引发剂DCP添加量达到0.15%时,复合材料的胶合强度、木破率、静曲强度和弹性模量值分别由1.02 MPa、2%、60.10 MPa、5 102 MPa增加至2.07 MPa、95%、77.20 MPa、6 822 MPa; 吸水率和吸水厚度膨胀率分别由77.80%和5.79%降低至53.75%和4.09%。DMA结果显示,复合材料的耐高温破坏能力随DCP添加量的增加而改善,当DCP用量由0增至0.15%时,复合材料在130 ℃时的储能模量保留率由44.19%提高到88.34%,胶接界面层失效的温度点从147 ℃提高至197 ℃。  相似文献   

9.
为了探讨3种无机纳米粒子(纳米碳酸钙(NPCC)、纳米蒙脱土(NMMT)和纳米氧化铝(NAL))对木粉/高密度聚乙烯(HDPE)木塑复合材料热学性能和力学性能的影响,采用模压成型方法制备木粉/HDPE木塑复合材料,利用综合热分析仪和热膨胀系数仪分析了木塑复合材料的热学性能,并测定了其力学性能.结果表明,3种无机纳米粒子对木粉/HDPE木塑复合材料的热学性能和力学性能均有一定影响.其中:添加NPCC可使木粉/HDPE木塑复合材料的线性热膨胀系数降低38.95%,并具有较好的热稳定性,从而在受热过程中的起始热分解温度提高了2.8℃,600℃时的残重率提高了39.1%;同时,添加NPCC的木粉/HDPE木塑复合材料力学性能提高的幅度最大,其拉伸强度、弯曲强度和冲击强度分别提高了32.86%、11.05%和35.32%.  相似文献   

10.
HAP/HDPE/UHMWPE复合材料的制备和表征   总被引:2,自引:0,他引:2  
通过化学共沉淀-水热合成法制备纳米级羟基磷灰石(HAP),再用自制模具制备HAP/高密度聚乙烯(HDPE)/超高相对分子质量聚乙烯(UHMWPE)复合材料.通过扫描电镜观察、X 射线衍射分析、热重分析、燃烧实验以及力学性能测试,研究HAP/HDPE/UHMWE 复合材料的微观结构和力学性能.研究结果表明通过口模挤出可使HDPE 分子链在应力作用下伸直取向,大量平行于长轴且紧密排列的微纤维形成.UHMWPE 的加入可以改善材料的微观结构,增加材料的串晶互锁结构.而HAP 和聚乙烯之间只是机械地混合在一起,呈层状结构,HAP 被聚乙烯组分紧紧包裹在一起,且在同一样品中HAP 含量比较均匀;随着HAP 含量增加,拉伸强度和抗弯强度下降,分别从170.7 MPa 和160.8 MPa 下降到99.2 MPa 和94.3 MPa,而弹性模量有所增加,从4.9 GPa 上升到5.9 GPa.  相似文献   

11.
碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是航空航天和聚变能源等高技术领域理想的高温结构材料,改善纤维与基体的界面结合是提高其力学性能的关键。本文采用化学气相沉积法在纤维表面原位生长碳纳米管,以达到改善纤维与基体的结合同时对复合材料进行二次增强的目的。结果表明,采用碳纳米管增强的SiCf/SiC复合材料的力学性能有不同程度的提高,特别是当碳纳米管的体积分数为5.31%时,复合材料的断裂韧性提高106.3%。纤维表面的碳纳米管层与纤维结合较弱,能够促进纤维的拔出,从而促进复合材料断裂韧性的提高;另外,碳纳米管的拔出对复合断裂韧性的提高也有一定的促进作用。  相似文献   

12.
将短切碳纤维(SCF)与木粉(WF)、高密度聚乙烯(HDPE)塑料和其他添加剂共混、熔融复合后,用模压成型方法制备了短切碳纤维增强木塑(SCF/WF/HDPE)复合材料;将碳布放置于木塑板上下表面,经模压成型制备碳纤维布增强木塑(CFC/WF/HDPE)复合材料。研究了碳纤维用量对碳纤维增强WF/HDPE复合材力学性能的影响,并利用扫描电镜(SEM)和红外光谱(FTIR)对碳纤维进行表征。结果表明:与纯WF/HDPE复合材相比,碳纤维加入量为10%时,复合材料的力学强度提高幅度最大,拉伸强度和弯曲强度分别提高了8.4%和10.6%;当碳纤维加入量为6%时,复合材料的韧性提高幅度最大,断裂伸长率提高了25.9%,冲击强度提高了24.4%。使用丙酮清洗掉碳纤维表面的上浆剂后,其增强效果比未经过处理的碳纤维略有下降。与短切碳纤维相比,碳布的增强效果更好,与短切碳纤维增强木塑(SCF/WF/HDPE)复合材料相比,碳布平铺在木塑板表面的结构拉伸性能可提高62%,断裂伸长率提高148%,弯曲强度提高71%,冲击强度提高313%。  相似文献   

13.
采用分散聚合法合成聚苯乙烯微球(PS),并在其表面化学镀Cu Ni,得到PS@Cu Ni复合微球;以碳纳米管、PS@Cu Ni复合微球为填料,HDPE为基体,通过模压法制备HDPE/PS@Cu Ni/CNTs复合材料,实验表明:HDPE/PS@Cu Ni复合材料具有良好的导电性和介电性能,碳纳米管能提高PS@Cu Ni复合微球对HDPE材料的电磁屏蔽性能,在PS微球添加量30wt%的情况下添加3wt%碳纳米管,在频率7. 5~12. 5 GHz范围内,HDPE复合材料电磁屏蔽效能从5 d B提高到24 d B.  相似文献   

14.
用一种金属Co修饰多壁碳纳米管基复合材料(y%Co/CNT)作为促进剂,制备一种高效新型的y%Co/CNT促进CuO-ZnO-ZrO2基催化剂(记为CuiZnjZrk-x%(y%Co/CNT)),考察其对CO2加氢制甲醇的催化性能.实验结果显示,在组成经优化的Cu8Zn2Zr5-10%(4.5%Co/CNT)催化剂上,5.0 MPa,523 K,V(H2)∶V(CO2)∶V(N2)=69∶23∶8,GHSV=25 000 mL/(h.g)的反应条件下,CO2加氢的转化频率达4.99×10-3s-1,分别是相同条件下非促进的原基质Cu8Zn2Zr5和单纯CNT促进的对应物Cu8Zn2Zr5-10%CNT上的相应值(4.31×10-3和4.64×10-3s-1)的1.16和1.08倍;催化剂的表征结果显示,金属Co修饰CNT促进的催化剂对H2优良的吸附活化性能对CO2加氢转化频率(TOF)的显著提高起主要作用.在CO2加氢产物中甲醇的C-基选择性达97.9%,单程时空产率为699 mg/(h.g),具有实用前景.  相似文献   

15.
为提升聚磷酸铵(ammonium polyphosphate, APP)在稻秸/HDPE(高密度聚乙烯)复合材料中的相容性,采用氨气冷等离子体对APP进行预处理,研究处理功率(100、200、300 W)和处理时间(1、2、3 min)对稻秸/HDPE复合材料阻燃性能和力学性能的影响。极限氧指数(limited oxygen index, LOI)测试结果表明,APP经过氨气冷等离子体预处理后,稻秸/HDPE复合材料的LOI均高于未处理试样; 当处理功率100 W、处理时间3 min时,LOI达到最大,为30.5%,较未处理时增加了10.9%。力学性能测试与双因素方差分析表明,氨气冷等离子体预处理APP对稻秸/HDPE复合材料的拉伸性能和冲击性能影响不显著,处理功率对稻秸/HDPE复合材料的弯曲强度影响显著。  相似文献   

16.
应用差示扫描量热法(DSC)和Avrami模型分析聚苯硫醚(PPS)/碳纳米管(CNT)复合材料的等温结晶行为,分别考察了PPS和复合材料的结晶动力学参数以及结晶活化能,揭示了PPS的等温结晶特性和少量CNT对PPS结晶行为的作用。结果表明:随着结晶温度的升高,复合材料的结晶速率逐渐下降,说明复合材料的结晶是以依热成核控制为主;少量CNT的加入降低了PPS的结晶活化能,明显提高了PPS的结晶速率,同时使成核方式发生转变;纯PPS的Avrami指数n约为4,结晶方式为均相成核,而复合材料的Avrami指数n约为3,转变为异相成核;成核方式的转变大大的提高了PPS的结晶速率。  相似文献   

17.
以KNG-150石墨烯微片(GNPs)为导电填料,PP(聚丙烯)/HDPE(高密度聚乙烯)复合体系为基体材料,制备石墨烯微片/PP/HDPE导电复合材料,研究GNPs质量分数,PP/HDPE质量比对材料的正温度系数效应(PTC)强度和负温度系数效应(NTC)强度的影响.结果表明:GNPs质量分数处在渗滤区间6%时,材料的PTC强度达到最大值;PP的加入可以有效地提高材料的PTC强度,同时还抑制了NTC效应;当PP/HDPE质量比为3:7时,效果最佳,此时PTC强度为5.58,NTC强度仅为0.25.  相似文献   

18.
采用数据驱动的方法对 SiCp(0.5CNT)/7075Al 铝基复合材料的化学成分以及制备工艺进行了分析, 针对抗拉强度和延伸率两个力学性能进行了特征重要性分析, 构建了包含 8 种机器学习算法的集成框架, 自动进行模型的参数调优和最优模型选择, 并在此基础上进行了材料逆向设计. 实验结果表明, 在 470 ${^\circ}$C 固溶 40 min, 120${^\circ}$C 时效 15 h 的热处理工艺下, SiCp(0.5CNT)/7075Al-1.0Mg 复合材料抗拉强度和延伸率的预测值为 617.48 MPa 和 2.98%, 实验值为 647.0 MPa 和 3.31%, 两项物理性能的平均绝对百分比误差(mean absolute percentage errors, MAPE)较小, 依次为 4.56% 和 9.97%. 这说明本数据驱动方法对铝基复合材料的工艺优化和性能提升有一定指导意义.  相似文献   

19.
Ni修饰多壁碳纳米管材料的制备及表征研究   总被引:3,自引:0,他引:3  
采用化学还原沉积法将少量镍负载分散到多壁碳纳米管(MWCNT,简写为CNT)上,制得一系列不同Ni载量的x%(质量百分数)Ni/CNT复合材料;利用多种谱学工具(如TEM,SEM、XRD、H2 TPD和CO TPD)对其物化性能进行表征,结果表明,所制得沉积镍颗粒粒径在~10nm量级;H2 TPD和CO TPD测试结果表明,经Ni修饰的CNT比单纯CNT对H2和CO具有更强的吸附活化能力,其所促进的Cu基催化剂对CO加氢成甲醇的催化活性比无CNT促进或单纯CNT促进的同类催化剂均明显提高.  相似文献   

20.
利用分子模拟方法对共价有机骨架(covalent organic framework,COF)/碳纳米管(carbon nanotube,CNT)复合材料COF@CNT中锂离子(Li+)的吸附与传输特性开展研究,明确了Li+的吸附位点与吸附顺序,得到了相应的吸附能,并观察COF@CNT的表观形貌变化.当达到饱和吸附状态时,COF@CNT的体积变化率仅为0.25,平均电压保持在2.00 V以上,而理论容量则高达1 402.47 mAh/g.此外,Li+在COF@CNT内部的电导率大于其在单纯CNT中电导率的实测值.模拟结果可为此类体系的实际应用提供理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号