首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
离子液体具有蒸气压低、稳定性好、离子电导率高、电化学窗口宽、溶解度大、可设计性强等优点。离子液体可用作无机合成中的溶剂、结构导向剂和模板。离子热合成是在离子液体中进行的一种新的合成方法。综述了近年来离子热合成在无机材料制备中的研究进展。  相似文献   

2.
采用微波合成方法以喹啉、N-甲基咪唑及N-乙基哌啶为原料合成3种离子液体。此方法绿色、清洁、高效且反应在3~6min即可完成,所有产物结构经1H NMR确认。  相似文献   

3.
微波法合成烷基吡啶类离子液体   总被引:1,自引:0,他引:1  
以吡啶和溴代正丁烷为原料采用微波法合成了中间体溴化N-丁基吡啶 ([BPy]Br),并通过正交试验对反应条件进行了优化.考察了原料配比、反应时间、微波功率对该反应的影响,结果表明:原料摩尔比1:1.1时,微波功率在400 W,反应时间20 min为较佳的反应条件.中间体在微波辐射下经过离子交换合成了N-丁基吡啶四氟硼酸盐([BPy]BF4) 和N-丁基吡啶六氟磷酸盐([BPy]PF6).产物结构由IR和1HNMR确证.  相似文献   

4.
以N-甲基咪唑、氯代正丁烷、KPF6及NaBF4等为原料,分别在微波和水浴2种加热条件下利用二步法合成出2种咪唑类离子液体[BMIM]PF6和[BMIM]BF4。比较了2种方法在中间体合成及阴离子置换中的优势和劣势,并利用IR,TGA和LSV等方法表征了所得离子液体的结构特征及电化学性能。结果表明,2种方法所合成的离子液体在物化性质上无明显差异。微波法在合成中间体时可显著缩短反应时间,产率可达90%以上;水浴加热法则更有利于阴离子置换。故采用微波法与水浴加热法相结合的方式合成离子液体可收到良好的效果。  相似文献   

5.
采用微波辅助离子液体催化合成辛基糖苷   总被引:1,自引:0,他引:1  
采用已内酰胺与对甲基苯磺酸制备一种离子液体(CP-ptsa),并用核磁共振氢谱对该离子液体进行表征。以该离子液体作催化剂,在微波辅助条件下研究用葡萄糖与正辛醇合成辛基糖苷的反应条件。用吡啶作探针的红外图谱证明该离子液体是一种Brφnsted酸。研究结果表明:与常用的糖苷合成方法相比,微波的辐射可以缩短辛基糖苷的反应时间,而对产率的影响不大;在优化后的合成条件下,即微波功率为600 W,反应温度为120℃,反应时间为10 min,醇糖物质的量比为6-1,催化剂的质量为葡萄糖质量的4%时,产率可以达到72%;经柱色谱纯化后的产物纯度为98%。用核磁共振碳谱确认了产物的糖苷键结构。  相似文献   

6.
以溴代烷烃、N甲基咪唑和六氟磷酸铵为原料,采用水浴微波法合成了3种疏水性咪唑类离子液体:[bmim]PF6、[hmim]PF6和[omim]PF6.结果表明,与传统方法相比,水浴微波法产率较高,且反应时间由传统的36 h缩短至50 min.通过正交试验对离子液体[bmim]PF6的水浴微波合成反应条件进行了优化,得到了适宜的合成条件:反应时间50 min,n (1溴正丁烷)∶n (N甲基咪唑)∶n (六氟磷酸铵)为1.1∶1.0∶1.0,微波功率385 W,产率可达到94.54%.结合反应机理对优化结果进行了分析,并通过红外光谱验证了3种疏水性离子液体的结构.  相似文献   

7.
微波合成配位离子液体   总被引:4,自引:4,他引:0       下载免费PDF全文
采用微波辐射加热法合成了一系列环境友好的配位离子液体(C4H9)4NX.C6H11NO,X=Cl-,Br-,Ac-。与热合成法相比,该方法合成配位离子液体(CILs)具有反应时间短、能耗低、无需加入有机溶剂等优点,通过IR,1H NMR对化合物结构进行了表征,测定了该系列CILs的电导率、pH值和溶解性等物化性质。  相似文献   

8.
以溴代1-乙基-3-甲基咪唑离子液体为溶剂兼模板剂,以磷酸、异丙醇铝、乙酸锰、HF为反应原料,合成不同锰含量的MnAPO-11分子筛.并通过元素分析、XRD、FT-IR、UV-Vis和TG-DSC等分析手段对分子筛的结构及性质进行表征,证明所合成的分子筛是锰元素取代的MnAPO-11分子筛.  相似文献   

9.
应用微波合成技术合成了固相反应难于制备的离子导体,讨论了微波合成的条件及对产物的影响.  相似文献   

10.
微波辅助下离子液体中肽核酸前体-碱基乙酸酯的合成   总被引:2,自引:1,他引:1  
以离子液体为溶剂,在微波辐射下合成了合成肽核酸的重要原料,反应时间短,普适性好,收率较高,具有很高的区域选择性.产品经1H NMR,13C NMR表征.  相似文献   

11.
综述了手性离子液体的合成方法,最新发展动向,及其在工业生产中的独特应用.对手性离子液体的发展提出了看法,并对其研究和应用前景进行了展望.  相似文献   

12.
 糖酯通常由亲水的糖分子和亲油的脂肪酸分子组成,是一类非离子型生物表面活性剂,具有发泡力强,泡沫稳定等优良的性质,被广泛应用于医药、化妆品等多个行业,其合成方法主要有溶剂法、微乳化法、无溶剂法和酶催化法,但是传统的合成方法中通常采用不易回收的有毒溶剂,加大了产品后续分离和精制的难度,导致了其在食品等行业应用的限制,而离子液体作为一种新型的环境友好溶剂和液体酸催化剂,不仅无毒、具有可设计性,且易于回收,循环利用率较高,可以很好地解决这一问题。文中概述了离子液体的特点和类型,阐述了近年来在合成糖酯的溶剂法和酶法中,离子液体作为溶剂替代品的研究现状,并对其在应用中存在的优缺点做了一些说明,最后对其研究中存在的问题提出了一些看法,对其研究发展的方向进行了展望。  相似文献   

13.
离子液体作为一种绿色溶剂,由于其优良性质,在分离、有机合成及催化反应等领域被广泛应用.本文综述了近年来离子液体作为一种绿色溶剂和催化剂在酯合成反应中的应用研究进展.  相似文献   

14.
以N-乙基哌啶、N-甲基吗啉为原料,采用微波合成方法合成了6种离子化合物。产物结构经1H NMR确认。探讨了价廉易得,环境友好和无毒性的离子化合物催化的芳香醛与乙酸酐的Perkin反应。该反应具有催化剂经济易得及其用量少、反应条件温和、环境友好和易操作等优点。  相似文献   

15.
新型离子液体[BDBU]BF_4合成与表征   总被引:1,自引:0,他引:1  
采用两步合成法,用1,8-二氮杂双环(5,4,0)十一-7-烯(DBU)和1-溴丁烷为原料,以丙酮为溶剂合成中间体溴化1-丁基-1,8-二氮杂双环(5,4,0)十一-7-烯([BDBU]Br),经阴离子交换合成新型碱性离子液体四氟硼酸化1-丁基-1,8-二氮杂双环(5,4,0)十一-7-烯[BDBU]BF4;经红外光谱(IR)、核磁共振氢谱(1H NMR)表征产物结构并对其热分析(TGA)。结果表明:离子液体有较高的热稳定区间,约330℃开始分解。  相似文献   

16.
应用X射线衍射K值法对荧光体微波辐射合成产物相Y2O2S:Eu^3+进行定量相分析研究,参考物相采用α-Al2O3,结果表明:在测定范围内最大相对偏差约2.4%,此法快速,简便、实用、对优选微波合成工艺技术参数和研究微波合成过程化学有应用价值。  相似文献   

17.
本文对近年来关于嗜热糖苷酶的研究进行了全面的论述,包括嗜热糖苷酶基因的克隆与表达的现状以及在酶法合成糖苷类化合物方面的应用,对比分析了目前提高转糖苷效率的方法,如定点突变、合理设计溶液体系、微波辐射等。在糖苷类化合物的水解与合成的工业生产中,嗜热糖苷酶以其良好的热稳定性可望成为一类高效、稳定的工具酶。  相似文献   

18.
常用离子液体研究进展评述   总被引:1,自引:0,他引:1  
对近年来常用离子液体的研究进展进行了全面综述,包括BPC/NO3室温离子液体、咪唑类离子液体、含氟离子液体、胍盐离子液体等。重点评述了BPC/NO3室温离子液体的合成以及他们在有机化学中的应用,如较低的熔点、可调节的Lewis酸度、良好的导电性、宽的电化学窗口、可以忽略的蒸汽压、较宽的使用温度及特殊的溶解性等。  相似文献   

19.
烷基咪唑类离子液体的合成及其性质   总被引:3,自引:2,他引:1  
以N甲基咪唑和溴代烷烃为原料,通过微波法合成了6种离子液体1烷基3甲基咪唑类溴盐:1正丙基3甲基咪唑溴盐([nPmim]Br)、1异丙基3甲基咪唑溴盐([iPmim]Br)、1正丁基3甲基咪唑溴盐[nBmim]Br)、1仲丁基3甲基咪唑溴盐([sB mim]Br)、1正戊基3甲基咪唑溴盐([nAmim]Br)、1正己基3甲基咪唑溴盐([nHmim]Br).然后以 [nBmim]Br为中间体,经过阴离子交换得到1正丁基3甲基咪唑四氟硼酸盐([nBmim]BF4).在25℃时测定了7种离子液体的密度,结果表明:含有相同阴离子的离子液体密度随着阳离子烷基链长度的增加而减小;含有相同阳离子的离子液体,阴离子体积越大,密度越高.通过循环伏安法测定了[nBmim]Br和[nBmim]BF4的电化学窗口,分别为2.0V和3.4V.[nBmim]BF4的DSC曲线表明,其只有玻璃化温度(-95℃),而没有结晶温度和熔点.  相似文献   

20.
绿色离子液体在无机纳米材料合成中的研究进展   总被引:1,自引:0,他引:1  
离子液体作为一种新型的绿色环保溶剂,与传统的溶剂相比,离子液体在合成过程中体现出很多优势,为无机纳米材料的合成开辟了一条新途径。目前,已经利用离子液体合成出了纳米金属粒子、金属氧化物、多孔材料、分子筛等。就近年来离子液体在无机纳米材料合成中的应用进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号