首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用ANSYS非线性接触分析方法,考虑层理效应并应用于重庆四面山隧道V级砂泥互层段进行围岩稳定性分析及初期支护优化.研究表明:隧道开挖后拱顶下沉值为水平收敛值1.5~2.0倍,拱肩处锚杆受力较拱顶处大,拱腰及拱脚处锚杆几乎不受力;根据水平软硬互层隧道开挖后围岩变形及支护受力特点,优化锚杆支护,得出砂泥互层施工段可将与岩层夹角小于35°范围的锚杆取消.在原有方案及优化方案施工段进行现场测试,结果显示模拟及优化数值与测试值基本符合.研究成果可在类似隧道施工中推广应用.  相似文献   

2.
针对某高速公路炭质软岩隧道施工病害问题,提出一种钢拱架槽钢纵连+三台阶锁脚锚杆加强支护方案,采用有限元数值计算及现场试验测试方法,探究了开挖施工步影响下初期支护结构受力及变形规律.研究结果表明:采用加强支护方案后,结构最大应力位于初期支护结构拱顶部位,数值计算与现场试验值分别为1.591、1.587 MPa,拱顶沉降的数值计算与测试值分别为9.575、13.670 mm,数值计算与现场试验结果基本吻合,满足结构安全要求;钢拱架槽钢纵连结构整体稳定性较好且内力分布均匀,提高了初期支护结构纵向稳定性,降低了围岩及初期支护结构的不均匀沉降值;三台阶锁脚锚杆由于受到初期支护结构的下沉剪力作用,根部形成弯折,通过横向抗力将荷载传递到围岩中,加强了初期支护结构环向承载力,抑制了初期支护结构的变形与沉降.研究成果可为类似工程提供借鉴参考.  相似文献   

3.
软岩公路隧道二次衬砌支护时间的优化研究   总被引:1,自引:1,他引:0  
软岩隧道围岩变形速率快、持续时间长,变形量大,使得二衬最佳支护时间的确定成为传统新奥法在软岩隧道应用的难点。基于充分利用围岩自承能力的新奥法理念,对现场多个Ⅳ级围岩断面初期支护变形监测数据进行统计分析,得出二次衬砌的最佳支护时间段为初期支护后22 d~26 d。采用拟合回归分析,得出油坊坪隧道的合理二衬支护时间为初期支护施作以后第24 d。借助FLAC3D内嵌蠕变模型对二衬支护时间进行验证,分析不同支护时机下支护结构的受力特征。结果表明:在蠕变计算计算第25 d以后混凝土喷层和锚杆已发生破坏或者错位,在初支以后第24 d进行二衬支护,二衬拱顶所分担的荷载为马上进行二衬支护的17.5%,周边为8.2%,下降明显,则监测数据分析所得二衬支护时机是合理的,适当提前施作二衬支护是有利的。  相似文献   

4.
以银西高铁早胜三号隧道为例,采用现场监测,对黄土塬区古土壤隧道围岩含水率及钢拱架应力变化特征进行研究。结果表明,古土壤隧道围岩含水率具有明显的时空效应,在时间上呈"增大-波动-平稳"的三阶段变化趋势,含水率趋于稳定后仰拱和拱脚部位围岩含水率均大于拱顶和拱脚处,且仰拱处含水率增幅在整个断面呈最大;钢拱架主要承受压应力,拱顶和拱腰处的钢拱架压应力最大,钢拱架在施工期内承受围岩压力、确保大断面古土壤隧道围岩稳定性方面发挥着重要作用;深埋古土壤隧道围岩变形以拱腰和边墙部位的水平收敛和沉降变形为主,拱顶沉降变形较小。  相似文献   

5.
为研究超大断面浅埋黄土隧道大变形控制技术及效果,依托隧道大变形事故案例,对隧道围岩变形破坏特征及原因进行分析,结合隧道地质条件及围岩特性,提出了合理有效的围岩变形控制技术及施工工艺,并应用数值模拟和现场测试对3种加固措施工况下的变形及应力进行分析。研究结果表明:超大断面浅埋黄土隧道围岩变形主要表现为前期变形速率大,变形持续时间长,累计变形量大,拱顶最大累计沉降为124.3 cm,围岩变形受开挖扰动和持续降雨影响显著;采取临时套拱加固有效抑制变形的持续发展,避免塌方事故的发生,而径向注浆加固和强化支护参数为后续顺利完成大变形段换拱施工提供安全保障;浅埋偏压地段采用地表超前预注浆技术,有效地改善上覆围岩特性,后续施工累计变形均在预留变形量范围内,确保了施工安全和进度。  相似文献   

6.
针对浅埋黄土隧道在开挖过程中发生的拱顶过量沉降问题,采用颗粒离散单元法模拟了不同开挖方法和加固措施对围岩稳定和变形的影响,分析了6种工况的围岩压力分布和位移发展情况,讨论了开挖方法和加固措施对隧道围岩稳定的影响.模拟结果显示,隧道拱肩和拱脚应力集中处水平位移较大,拱部和边墙开挖为黄土隧道留核心开挖施工中的关键工序,施工中宜及早支护避免隧道发生过大变形.浅埋黄土隧道拱顶下沉量远大于周边收敛;对于相同的支护形式,留核心土下部全断面开挖法产生的位移总量约为留核心土下半断面分部开挖法的1.2倍;对于相同的开挖方法,无超前注浆支护产生的位移总量约为有超前支护的1.5倍;而有无系统锚杆的隧道围岩变形量基本相同.研究表明,浅埋黄土隧道可采取超前导管注浆减小隧道开挖变形,而系统锚杆由于支护效果不明显可考虑取消.  相似文献   

7.
为研究层状岩体的层厚与倾角对隧道及围岩稳定性的影响,以贵州省栗木山隧道为背景,采用有限元软件ANSYS分析了层状白云质灰岩地层隧道开挖后的围岩与支护结构受力变形特征,得到了不同岩层厚度和结构面倾角时围岩和衬砌的位移云图、关键节点的位移。研究结果表明,隧道拱部竖向位移呈"V"型分布,最大竖向位移出现在隧道拱顶,最大竖向位移随岩层厚度增大而减小,存在明显的临界厚度,当岩层厚度大于0.6m,减小趋势变缓;倾斜岩层隧道围岩与衬砌位移存在明显的非对称性,岩层倾向侧位移小于另一侧,非对称性随倾角增大先增大后减小,倾角45°时最为明显,倾角大于60°时逐渐趋于平稳;拱脚和墙帮的位移受倾角变化小。层状岩体隧道支护设计、施工时应避免拱顶和非对称变形过大造成事故。  相似文献   

8.
为了研究高地应力条件下隧道软弱围岩的变形破坏机制,探索适用于高地应力条件下的软岩隧道大变形控制技术,基于宝汉(宝鸡—汉中)高速某高地应力软岩隧道工程,提出了“双层H形钢拱架”初期支护和“原位应力释放+双层H形钢拱架”初期支护2种建设方案,并通过现场试验的方法对比分析2种方案的控制效果。结果表明:“双层H形钢拱架”方案优于“原位应力释放+双层H形钢拱架”初期支护方案,后者对围岩的扰动较大,在围岩松散破碎条件下,优先选用“双层H形钢拱架”方案,但在地应力极高的条件下,采用“原位应力释放+双层H形钢拱架”方案更合适。采用双层初期支护方案,可降低围岩损伤。此外,支护施工中应合理确定预留变形量,宁超勿欠,以保证拱架支护效果。  相似文献   

9.
公路偏压隧道开挖及支护的数值模拟研究   总被引:1,自引:0,他引:1  
在查明隧道围岩工程地质条件的基础上,运用有限元研究了公路隧道开挖与支护过程中的应力、位移及塑性区的分布规律。结果表明,锚喷支护对于控制围岩拱顶和底鼓的变形作用明显,拱顶竖向位移在施作锚喷支护后增幅明显减小,在二次衬砌施作之前趋于稳定;隧道稳定性最不利位置在拱顶、拱腰和底部,建议设计时适当增加锚杆的数量,施工时要加强初期支护并控制好喷射混凝土的厚度,防止过大的回弹变形。  相似文献   

10.
岩溶隧道施工安全和支护结构稳定性与隐伏溶洞位置分布有关.本文通过Midas/gts进行数值模拟分析,研究隐伏溶洞不同位置组合下,隧道施工过程中的围岩变形与支护结构受力特性.数值模拟结果表明:隐伏溶洞群分布在隧道上部时,对隧道围岩变形及支护结构稳定性影响较小;当隐伏溶洞群分布在隧道下部时,若拱脚位置同时存在溶洞,则会对隧道支护结构稳定性与围岩变形产生较大影响,若拱脚位置无溶洞则对隧道围岩变形与支护结构稳定性影响不大;隐伏溶洞群分布在侧部对隧道围岩变形与支护结构稳定性影响最大.  相似文献   

11.
以国家一带一路重点项目云南玉磨铁路曼勒1号隧道浅埋段为依托,结合现场施工中遇邻近断层破碎带隧道塌方冒顶事故,研究了西南地区软岩浅埋隧道冒顶防治措施.采用MIDAS GTS NX有限元软件建立邻近断层破碎带的浅埋隧道模型,依据隧道冒顶机理分析及有限元模型模拟分析结果,提出浅埋隧道支护方案.研究结果表明:在强化支护措施后浅埋隧道拱顶沉降及拱腰收敛均在允许变形量范围内;围岩塑性区主要集中在拱顶两侧及拱腰处,右侧塑性区范围较大,产生塑性破坏的风险较大.围岩最大主应力及初支最大主应力显示,隧道右侧拱腰处初支出现应力集中的风险较大,围岩出现应力集中后会导致受压破坏区和受剪破坏区逐渐增加,当两种破坏区域逐渐重合后围岩会产生塑性破坏,最终导致塌方冒顶.根据模拟计算及现场实际工况,本文提出在隧道塌方冒顶段采用“大管棚+小导管”超前支护组合、洞内全环I18型钢钢架附加临时横撑的支护防治方案,为了提高围岩稳定性对断层破碎带进行注浆加固,经现场施作后防治效果良好,为今后类似工程提供指导.  相似文献   

12.
隧道围岩动态变形规律及控制技术研究   总被引:1,自引:0,他引:1  
基于前人既有研究成果和日本龟浦隧道围岩变形试验,结合郑西客运专线大断面黄土隧道围岩大变形的工程实践,阐述隧道施工影响下围岩变形动态规律,提出围岩变形控制的技术要点和技术措施,并提出相应的围岩变形控制建议.研究结果表明:隧道开挖后的围岩变形可分为掌子面前方的先行变形、掌子面变形及掌子面后方变形3种形式,且这3种变形是同时发生的.控制开挖工作面失稳、拱顶失稳、拱脚下沉和围岩大变形等是隧道围岩变形控制的要点.开挖过程控制和辅助工法控制是隧道围岩变形控制的重点,其中初期支护及时闭合和合理辅助工法的选取是关键.  相似文献   

13.
为探明特大断面砂质板岩隧道Ⅴ级围岩时空效应规律,进而为类似隧道工程提供系统性借鉴,通过现场监控量测及大数据回归分析方法研究特大断面砂质板岩隧道Ⅴ级围岩变形时空效应。结果表明:隧道开挖,施做初期支护后,拱顶沉降及洞室围岩水平收敛过程分为3个阶段,分别为急剧变形阶段、缓慢变形阶段、稳定阶段;隧道开挖,施做初期支护25 d后,是施做二次衬砌最佳时机;隧道结构体系与掌子面空间距离约3倍洞径时,是施做二次衬砌最佳时机,且Ⅴ级围岩二衬距离掌子面距离不应大于50 m。  相似文献   

14.
重庆市轨道交通5号线1期3标段为富水浅埋扁平超大断面隧道工程,采用9步双侧壁导坑法中的对称开挖步序施工。应用MIDAS-GTS软件建立隧道三维有限元模型,计算了3种不同开挖步序条件下地表沉降、围岩变形和支护结构受力情况,并将计算结果与现场监测数据进行了对比验证。验证结果表明:扁平超大断面隧道拱顶区域受力作用面较大,拱顶区域围岩及喷混支护应力较大,拱顶稳定性较低,拱脚应力集中。施工阶段隧道结构对横向变形较为敏感,3种开挖步序拱脚水平收敛值曲线随施工步序呈现多台阶变化;中隔墙核心土拆除时,水平收敛值及拱顶沉降值曲线出现突变,该阶段应增大监测频率。对3种施工步序进行了数值模拟,提出了本工程地质条件下大跨扁平隧道施工的合理步序。  相似文献   

15.
高地应力破碎围岩地层在开挖隧道过程中极易发生大变形、钢架扭曲、局部垮塌等灾害。以天平铁路关山隧道为依托,通过监测两个试验段内的围岩压力、初期支护受力与变形、二次衬砌混凝土应力的分布特征,来探讨高地应力破碎围岩地层中不同断面形式和支护参数情况下隧道支护结构的变形与受力特征。结果表明:在以水平地应力为主的破碎围岩地层中,隧道开挖引起的变形以边墙水平收敛为主,拱顶沉降次之;高边墙小曲率断面形式的单线铁路隧道受力和变形均较大,而增大边墙曲率可有效抑制隧道开挖引起的变形,使支护结构受力更为均匀,受力状态明显改善。研究可为高地应力破碎围岩地层中隧道设计提供一定的参考。  相似文献   

16.
通过联拱隧道结构受力的有限元分析,以解决联拱隧道施工中的各个开挖阶段围岩的稳定性、初期支护和临时支护措施及其受力检算及二次衬砌的受力等状况,比选最佳施工方案。  相似文献   

17.
《河南科学》2016,(7):1114-1119
以苏州凤凰山大跨度双连拱隧道工程为例,采用有限元软件对多工序开挖条件下双连拱隧道围岩应力场、位移场的变化及初期支护的受力情况进行了详细的分析.通过分析得出,中隔墙顶部及拱腰处围岩存在应力集中的现象;中隔墙中间部位应力最大.竖向位移在主洞拱顶和拱底较大.通过现场实测,测得拱顶沉降随开挖工序的变化趋势,将理论分析结果与实测结果进行对比分析,结果表明,数值模拟得出的拱顶沉降与实测结果基本是一致,由此证明,数值模拟结果能真实反应现场隧道围岩的应力应变状态随开挖步骤的变化趋势.  相似文献   

18.
浅埋偏压赋存条件是诱发连拱隧道大变形灾害的重要因素.以某浅埋偏压公路连拱隧道工程为背景,借助数值模拟方法对比研究不同开挖方案条件下偏压连拱隧道围岩、支护结构及曲中墙力学行为变化规律,并结合现场实测数据分析偏压洞口失稳灾害原因及处治措施.研究结果表明,围岩水平位移和竖向位移呈非对称分布,施工阶段埋深较大侧围岩变形受偏压荷载作用影响更为显著;不同开挖方案条件下中墙水平应力分布差异不明显,而竖向应力分布差异较大,中墙墙脚(拱脚)位置出现水平压应力集中现象;方案Ⅱ条件下隧道初期支护拱顶水平和竖向位移均约为方案I的1.40倍以上,且方案Ⅱ更易引起埋深较大侧隧道中墙墙体因遭受附加偏压荷载作用而发生压裂破坏;针对浅埋偏压洞口大变形诱发原因,给出相应的防治措施,加固处治效果显著.研究成果可为浅埋偏压隧道施工变形控制和灾害防治提供科学参考.  相似文献   

19.
为研究高铁隧道过采空区段的围岩变形规律,本文以太焦高铁皇后岭隧道典型过采空区段工程为背景,通过对典型断面进行隧道围岩变形和拱架内力的持续监测,对比分析不同施工阶段下高铁隧道围岩变形受力规律。分析结果表明:上台阶开挖时是围岩变形发生的主要阶段,隧道最大沉降变形发生于拱顶,占总变形比值的50%以上,且隧道距离采空区底板距离越近,围岩受开挖和采空区扰动影响越大;钢拱架受力为全环压应力,整体分布呈现“上大下小”、“不均匀对称”的特点,受力最大位置出现在拱顶和右拱肩位置,并且拱架受力随着掌子面的远离,其轴力变化速率呈现出逐步减少的趋势。结合位移和应力监测数据分析结果,采空区对隧道的影响高度约为25.7m。研究成果可为类似隧道过采空区工程的设计、施工提供借鉴和参考。  相似文献   

20.
依托某一实际工程,基于荷载结构法原理,采用Midasgts有限元软件,比较分析了Ⅳ级软质围岩段隧道格栅钢架(H15 cm×20 cm)和I18工字钢支护的刚度、变形及受力情况,研究了围岩硬度变化对初期支护结构安全性影响.选择合理的钢架支护形式,并将现场监测结果与数值计算结果对比分析,研究结果表明:两者钢架支护结构最小安全系数均出现在拱顶和拱脚位置,变形最大均发生在拱顶位置;I18工字钢支护的承载能力要明显大于格栅钢架;Ⅳ级硬岩地层宜优先选择H15 cm×20 cm格栅钢架,对于Ⅳ级软岩和较软岩宜优先选择I18工字钢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号