首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 203 毫秒
1.
设G是简单图,用P(G,λ)表示图G的色多项式,若对任意简单图H使P(H,λ),都有H与G 同构,则称G是色唯一图,令K(m,n,r)表示完全三部图。  相似文献   

2.
设G是简单图,用P(G,λ)表示图G的色多项式,若对任意简单图H使P(H,λ)=P(G,λ),都有H与G同构,则称G是色唯一图,用K(m,n)-A表示从K(m,n)中删去边子集A所得的二部图,令L2^-s(m,n)={K(m,n)-A||A|=s},研究一般形式的K(m,n)-A的色唯一性问题,通过引进色正规图类的概念,使用比较两个色等价图的色划分数的方法,得出G∈L2^-s(m,n)的色等价图仍然是属于L2^-s(m,n)的一般形式数值条件,进一步得出G∈L2^-s(m,n)(2≤s≤4)为色唯一图的一般形式数值条件,所得结果完全覆盖并推广了1997年以前该研究方向的相关结果。  相似文献   

3.
设G为简单图,P(G,λ)为G的色多项式。若对任意简单图H满足P(H,λ)=P(G,λ),都有H与G同构,则称G是色唯一图,设K(m,n,r)表示完全三部图。证明了(1)对任意非负整数k,若n≥k+k^2/3,则K(n,n,n+k)是色唯;(2)若n≥4,则K(n,n,n+4)是色唯一图。  相似文献   

4.
林永  邹辉文 《江西科学》2006,24(2):166-169,190
设G是简单图,用P(G,λ)表示图G的色多项式,若对任意简单图H使P(H,λ)=P(G,λ),都有H与G同构,则称G是色唯一图。令K(m,n,r)表示完全三部图,证明了(1)设m≤n≤r,0≤r-m≤4,若m≥2,则除去K(2,2,6)、K(2,3,6)、K(3,3,7)、K(3,4,7)外,K(m,n,r)是色唯一图。(2)若n≥4,0≤k≤2,则K(n-k,n,n k)是色唯一图。  相似文献   

5.
完全三部图K(2,4,6)的色唯一性   总被引:1,自引:0,他引:1  
设G是简单图,用P(G,λ)表示图G的色多项式.若对任意图H使P(H,λ)=P(G,λ),都有H与G同构,则称G是色唯一图.作者证明了:完全三部囹K(2,4,6)是色唯一图.从而解决了文[1]中的一个遗留问题.  相似文献   

6.
完全三部图K(n-4,n,n)的色唯一性   总被引:1,自引:0,他引:1  
设G是简单图,用P(G,λ)表示图G的色多项式.若对任意图H使P(H,λ)=P(G,λ),都有H与G同构,则称G是色唯一图.用K(m,n,r)表示完全三部图,证明了当K=4时,如下猜想[1]成立:对非负整数n,k,当n≥k+2时,K(n-k,n,n)是色唯一图.即当n≥6时,K(n-4,n,n)是色唯一图.  相似文献   

7.
邹辉文 《江西科学》2000,18(2):63-67
设P(G,λ)表示简单图G的色多项式。简单图H称为与G是色等价的(记作H ̄G),如果P(H,λ)=P(G,λ)。简单图类L称为色正规图类,若对任意H,G∈L使H ̄G都有H与G同构。  相似文献   

8.
设G是简单图,用P(G,λ)表示图G的色多项式,令K(m,n,r)表示完全三部图.证明了1)当3≤m≤n≤r时,令s=1/√6√(n-m)2 (r-n)2 (r-m)2 12,若m n r>2√3s 3s2,则K(m,n,r)-A(|A|=2)是色唯一图;2)当m≥4时,K(m,m,m)-A,K(m,m,m 1)-A,K(m,m 1,m 1)-A,(|A|=2)都是色唯一图;3)设n,k为非负整数,则当n>k2 2√k2 6 k 2时,K(n-k,n,n)-A;当n>k2 2√k2 6-k/3 2时,K(n,n,n k)-A;当n>2√3k2 6 k2 2时,K(n-k,n,n k)-A(|A|=2)均为色唯一图.  相似文献   

9.
完全t部图K(n-k,n,…,n)的色唯一性   总被引:1,自引:0,他引:1  
设P(G,λ)是图G的色多项式.如果对任意使P(G,λ)=P(H,λ)的图H都与G同构,则称图G是色唯一图.通过比较图的特征子图的个数,讨论了由文献[Koh K M, Teo K L. The search for chromatically unique graphs. Graphs and Combinatorics, 1999,6: 259-285]中提出的猜想(若n≥k 2,则完全三部图K(n-k,n,n)是色唯一图);推广了文献[Liu Ru-yin, Zhao Hai-xing, Ye Cheng-fu. A complete solution to a conjecture on chromatic unique of complete tripartite graphs. Discrete Mathematics, 2004, 289: 175-179]中的结果(若n≥k 2≥4,则K(n-k,n,n)是色唯一图;若n≥2k≥4,则K(n-k,n-1,n)是色唯一图);证明了若n≥k 2≥4,则K(n-k,n,...,n)是色唯一图,若n≥k 2≥4,则K(n-k,n-1,n,...,n)是色唯一图.  相似文献   

10.
关于完全三部图K(n-k,n,n+k)的色性   总被引:2,自引:2,他引:2  
设G为简单图,P(G,λ)的色多项式,若对任意简单图H满足P(H,λ)=P(G,λ),都有H与G同构,则称G是色唯一图,设K(m,n,r)表示完全三部图,证明了:(1)对任意非负整数k,若n≥2√-3k/3+k^2,则K(n-k,n,n+k)是色唯一图。(2)若n≥9,则K(n-3,n,n+3)是色唯一图。  相似文献   

11.
The chromatically uniqueness of bipartite graphs K (m, n) - A(]A] = 2) was studied. With comparing the numbers of partitions into r color classes of two chromatically equivalent graphs, one general numerical condition guaranteeing that K( m, n) - A ( I A ] = 2) is chromatically unique were obtained. This covers and improves the former correlative results.  相似文献   

12.
With its comprehensive applicatian in network information engineering (e.g.dynamic spectrum allocation tinder different distance comtraints) and in network combination optimization (e.g.safe storage of deleterious materials),the graphs'cloring theory and chromatic uniqueness theory have been the forward position of graph theory research.The later concerns the equlvaleat classification of graphs with their color polynomials and the determination of uniqueness of some equivalent classification under isomorphism. In this paper,by introducing the concept of chromatic nomality and comparing the manber of partitions of two chromatically equivalent graphs,a general numerical condition guareateeing that bipartite graphs K (m,n)-A (A(∈)E (K(m,n)) and |A|≥2) is chromatically unique was obtained and a lot of chromatic uniquoness graphs of bipartite graphs K (m,n)-A were determined.The results obtained in this paper were general.And the results cover and extend the majority of the relevant results obtained within the world.  相似文献   

13.
设G是简单图,用P(G,λ)表示图G的色多项式.令K(m,n,r)表示完全三部图。G=K(m,n,r)-A(|A|=2),3≤m≤n≤r.证明了若图Y使得P(Y,λ),则Y=K(m+α,n+β,r-(α+β))-S,其中α,β是整数,且|S|=e=(r-m)α+(r-n)β-2(α^2+αβ+β^2)≥0.且e=2时,G和Y同构,同时给出了α,β的范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号