首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eutherian placenta, an organ that emerged in the course of mammalian evolution, provides essential architecture, the so-called feto-maternal interface, for fetal development by exchanging nutrition, gas and waste between fetal and maternal blood. Functional defects of the placenta cause several developmental disorders, such as intrauterine growth retardation in humans and mice. A series of new inventions and/or adaptations must have been necessary to form and maintain eutherian chorioallantoic placenta, which consists of capillary endothelial cells and a surrounding trophoblast cell layer(s). Although many placental genes have been identified, it remains unknown how the feto-maternal interface is formed and maintained during development, and how this novel design evolved. Here we demonstrate that retrotransposon-derived Rtl1 (retrotransposon-like 1), also known as Peg11 (paternally expressed 11), is essential for maintenance of the fetal capillaries, and that both its loss and its overproduction cause late-fetal and/or neonatal lethality in mice.  相似文献   

2.
We undertook a quantitative trait locus (QTL) analysis in mice to identify modifier genes that might influence the severity of human iron disorders. We identified a strong QTL on mouse chromosome 9 that differentially affected macrophage iron burden in C57BL/10J and SWR/J mice. A C57BL/10J missense allele of an evolutionarily conserved gene, Mon1a, cosegregated with the QTL in congenic mouse lines. We present evidence that Mon1a is involved in trafficking of ferroportin, the major mammalian iron exporter, to the surface of iron-recycling macrophages. Differences in amounts of surface ferroportin correlate with differences in cellular iron content. Mon1a is also important for trafficking of cell-surface and secreted molecules unrelated to iron metabolism, suggesting that it has a fundamental role in the mammalian secretory apparatus.  相似文献   

3.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. The paternally expressed gene insulin-like growth-factor 2 (Igf2) is separated by approximately 100 kb from the maternally expressed noncoding gene H19 on mouse distal chromosome 7. Differentially methylated regions in Igf2 and H19 contain chromatin boundaries, silencers and activators and regulate the reciprocal expression of the two genes in a methylation-sensitive manner by allowing them exclusive access to a shared set of enhancers. Various chromatin models have been proposed that separate Igf2 and H19 into active and silent domains. Here we used a GAL4 knock-in approach as well as the chromosome conformation capture technique to show that the differentially methylated regions in the imprinted genes Igf2 and H19 interact in mice. These interactions are epigenetically regulated and partition maternal and paternal chromatin into distinct loops. This generates a simple epigenetic switch for Igf2 through which it moves between an active and a silent chromatin domain.  相似文献   

4.
5.
6.
Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9.   总被引:20,自引:0,他引:20  
The initial stages of pancreatic development occur early during mammalian embryogenesis, but the genes governing this process remain largely unknown. The homeodomain protein Pdx1 is expressed in the developing pancreatic anlagen from the approximately 10-somite stage, and mutations in the gene Pdx1 prevent the development of the pancreas. The initial stages of pancreatic development, however, still occur in Pdx1-deficient mice. Hlxb9 (encoding Hb9; ref. 6) is a homeobox gene that in humans has been linked to dominant inherited sacral agenesis and we show here that Hb9 is expressed at early stages of mouse pancreatic development and later in differentiated beta-cells. Hlxb9 has an essential function in the initial stages of pancreatic development. In absence of Hlxb9 expression, the dorsal region of the gut epithelium fails to initiate a pancreatic differentiation program. In contrast, the ventral pancreatic endoderm develops but exhibits a later and more subtle perturbation in beta-cell differentiation and in islet cell organization. Thus, dorsally Hlxb9 is required for specifying the gut epithelium to a pancreatic fate and ventrally for ensuring proper endocrine cell differentiation.  相似文献   

7.
Imprinted X inactivation maintained by a mouse Polycomb group gene   总被引:1,自引:0,他引:1  
  相似文献   

8.
As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.  相似文献   

9.
Post-translational modification of proteins by the ubiquitin-like molecule SUMO (sumoylation) regulates their subcellular localization and affects their functional properties in vitro, but the physiological function of sumoylation in multicellular organisms is largely unknown. Here, we show that the C. elegans Polycomb group (PcG) protein SOP-2 interacts with the SUMO-conjugating enzyme UBC-9 through its evolutionarily conserved SAM domain. Sumoylation of SOP-2 is required for its localization to nuclear bodies in vivo and for its physiological repression of Hox genes. Global disruption of sumoylation phenocopies a sop-2 mutation by causing ectopic Hox gene expression and homeotic transformations. Chimeric constructs in which the SOP-2 SAM domain is replaced with that derived from fruit fly or mammalian PcG proteins, but not those in which the SOP-2 SAM domain is replaced with the SAM domains of non-PcG proteins, confer appropriate in vivo nuclear localization and Hox gene repression. These observations indicate that sumoylation of PcG proteins, modulated by their evolutionarily conserved SAM domain, is essential to their physiological repression of Hox genes.  相似文献   

10.
The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.  相似文献   

11.
Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.  相似文献   

12.
Prader-Willi syndrome (PWS) is associated with paternally derived chromosomal deletions in region 15q11-13 or with maternal disomy for chromosome 15. Therefore, loss of the expressed paternal alleles of maternally imprinted genes must be responsible for the PWS phenotype. We have mapped the gene encoding the small nuclear RNA associated polypeptide SmN (SNRPN) to human chromosome 15q12 and a processed pseudogene SNRPNP1 to chromosome region 6pter-p21. Furthermore, SNRPN was mapped to the minimal deletion interval that is critical for PWS. The fact that the mouse Snrpn gene is maternally imprinted in brain suggests that loss of the paternally derived SNRPN allele may be involved in the PWS phenotype.  相似文献   

13.
14.
An abundance of X-linked genes expressed in spermatogonia   总被引:22,自引:0,他引:22  
Spermatogonia are the self-renewing, mitotic germ cells of the testis from which sperm arise by means of the differentiation pathway known as spermatogenesis. By contrast with hematopoietic and other mammalian stem-cell populations, which have been subjects of intense molecular genetic investigation, spermatogonia have remained largely unexplored at the molecular level. Here we describe a systematic search for genes expressed in mouse spermatogonia, but not in somatic tissues. We identified 25 genes (19 of which are novel) that are expressed in only male germ cells. Of the 25 genes, 3 are Y-linked and 10 are X-linked. If these genes had been distributed randomly in the genome, one would have expected zero to two of the genes to be X-linked. Our findings indicate that the X chromosome has a predominant role in pre-meiotic stages of mammalian spermatogenesis. We hypothesize that the X chromosome acquired this prominent role in male germ-cell development as it evolved from an ordinary, unspecialized autosome.  相似文献   

15.
According to the prevailing view, mammalian X chromosomes are enriched in spermatogenesis genes expressed before meiosis and deficient in spermatogenesis genes expressed after meiosis. The paucity of postmeiotic genes on the X chromosome has been interpreted as a consequence of meiotic sex chromosome inactivation (MSCI)--the complete silencing of genes on the XY bivalent at meiotic prophase. Recent studies have concluded that MSCI-initiated silencing persists beyond meiosis and that most genes on the X chromosome remain repressed in round spermatids. Here, we report that 33 multicopy gene families, representing approximately 273 mouse X-linked genes, are expressed in the testis and that this expression is predominantly in postmeiotic cells. RNA FISH and microarray analysis show that the maintenance of X chromosome postmeiotic repression is incomplete. Furthermore, X-linked multicopy genes exhibit a similar degree of expression as autosomal genes. Thus, not only is the mouse X chromosome enriched for spermatogenesis genes functioning before meiosis, but in addition, approximately 18% of mouse X-linked genes are expressed in postmeiotic cells.  相似文献   

16.
Imprinted genes are expressed from only one of the parental chromosomes and are marked epigenetically by DNA methylation and histone modifications. The imprinting center 2 (IC2) on mouse distal chromosome 7 is flanked by several paternally repressed genes, with the more distant ones imprinted exclusively in the placenta. We found that most of these genes lack parent-specific DNA methylation, and genetic ablation of methylation does not lead to loss of their imprinting in the trophoblast (placenta). The silent paternal alleles of the genes are marked in the trophoblast by repressive histone modifications (dimethylation at Lys9 of histone H3 and trimethylation at Lys27 of histone H3), which are disrupted when IC2 is deleted, leading to reactivation of the paternal alleles. Thus, repressive histone methylation is recruited by IC2 (potentially through a noncoding antisense RNA) to the paternal chromosome in a region of at least 700 kb and maintains imprinting in this cluster in the placenta, independently of DNA methylation. We propose that an evolutionarily older imprinting mechanism limited to extraembryonic tissues was based on histone modifications, and that this mechanism was subsequently made more stable for use in embryonic lineages by the recruitment of DNA methylation.  相似文献   

17.
18.
19.
Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.  相似文献   

20.
Cytosine methylation of mammalian DNA is essential for the proper epigenetic regulation of gene expression and maintenance of genomic integrity. To define the mechanism through which demethylated cells die, and to establish a paradigm for identifying genes regulated by DNA methylation, we have generated mice with a conditional allele for the maintenance DNA methyltransferase gene Dnmt1. Cre-mediated deletion of Dnmt1 causes demethylation of cultured fibroblasts and a uniform p53-dependent cell death. Mutational inactivation of Trp53 partially rescues the demethylated fibroblasts for up to five population doublings in culture. Oligonucleotide microarray analysis showed that up to 10% of genes are aberrantly expressed in demethylated fibroblasts. Our results demonstrate that loss of Dnmt1 causes cell-type-specific changes in gene expression that impinge on several pathways, including expression of imprinted genes, cell-cycle control, growth factor/receptor signal transduction and mobilization of retroelements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号