首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
连续函数有“介值定理”,某些不连续函数也有其“介值定理”。这里介绍的导数的“介值定理”即是一例。但应该注意不是每一函数都必是某函数的导数。闭区间上的可微函数的导数〔区间端点考虑左、右导数〕,可能有间断点,但“介值定理”成立。即: 导数的介值定理若f(x)在〔a,b〕上可微,且(?),则对于f′(a)与f′(b)之  相似文献   

2.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

3.
定义用叠代法求介方程f(x)=0称为“快速弦位叠代法”. 定理设函数f(x)在[a,b]上单调连续,并在[a,b]的两端点有相反符号,设f(x)满足i)一价差商f(x_n,x_(n-1))=λn,|λn|≥a>0, ii)二阶差商则叠代(1)收敛于方程f(x)=0的介. 设其中l=BKγ<2.  相似文献   

4.
官兴隆先生用两个引理给出了拉格朗日中值定理一个新证明,证明采用了逼近的方法,很有特色。本文给引理一一个新的证明,并得出一个推论,仍沿用逼近的方法,给 Caucny 定理一个新证明。Caucny 定理若 i)函数 f(x)与 g(x)在[a,b]上连续;ii)f(x)与 g(x)在(a,b)内可导;iii)g(x)≠0;iv)f(a)≠g(b)则在(a,b)内至少存在一点ξ,使  相似文献   

5.
1定理及性质 1.1定理 下面的导函数介值性定理即是达布定理. 定理:设f'(x)在[a,b]上存在,r是f'(a)与f'(b)之间的任意一个值,则存在一点c∈[a、b]使得f'(c)=r.  相似文献   

6.
实函中证明了[a b]上的有界函数f(x)黎曼可积的充要条件是f(x)不连续点所成之集的勒贝格测度为零。关于黎曼——斯蒂阶积分也有类似定理:f(x)在[a,b]上有界,α(x)为[a,b]上的有界变差函数,则f(x)在[a,b]上关于a(x)黎曼——斯蒂阶可积的充要条件是α(x)在f(x)不连续点所成之集上的全变差为零。本文就是给出这个定理的一个证明。  相似文献   

7.
1 函数列一致收敛性定理定理1 若函数列f_n(x)在[a,b]上同等连续,且对于任一x∈[a,b],有f_n(x)→f(x)(n→∞),则f_n(x)在[a,b]一致收敛于f(x)。  相似文献   

8.
<正> Sard定理右f(x)d[a,b]上连续可微,则集合{f(x):f'(x)=0}的Lcbcsgnc测度为零。为证明此定理,我们先证一个引理: 引理若f(x)在[a,b]上连续可微,则对任开集A[a,b],有{f(x):x∈A}  相似文献   

9.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

10.
本学报1979年第2期刊登了绍文同志《关于积分第一中值定理》一篇文篇,作者给出了定理的证明。本文就C∈(a,b)的问题再给出一个较为简明的证明,并给一个例子,说明连续的条件是必要的,即若f(x)在〔a,b〕上不连续时,则结论不再成立。这个定理是这样叙述的: 积分第一中值定理设在区间〔a,b〕上f(x)与g(x)都可积,且g(x)不变号,m≤f(x)≤M,则存在μ,m≤μ≤M,使下式成立 integral from n=a to b(f(x)g(x)dx)=μintegral from n=a to b(g(x)dx) (1)如果f(x)在〔a,b〕上连续,则可进一步证明,存在C∈(a,b),使 (?) (2) 为了叙述上的完整起见,把前一部分的证明也写上。证明:先证前一部分。由f(x)与g(x)在区间〔a,b〕上的可积性知(1)式左端的积分是存  相似文献   

11.
在数学分析中第二积分中值定理的基本形式是: 定理1 设f(x)在〔a,b〕(a〈b)上单调下降(即使广义的也可以),并且非负,则对〔a,b〕上的任意可积函数g(x),有integral from n=a to b (f(x)g(x)dx)=f(a) integral from n=a to b (g(x)dx) (1)其中ξ∈〔a,b〕。其证明可参见〔1〕、〔2〕、〔3〕。定理1仅告诉我们其中的ξ∈〔a,b〕,那么能否恰当地选取ξ,使之属于开的区间(a,b)呢?我们说,不一定!且看下面的例题。考虑〔0,(3/2)π〕上函数 f(x)=1与g(x)=cosx,显然它们满足定理1的条件,于是按照定理1,(1)式应该成立。然而  相似文献   

12.
研究测度链T上边值问题[q(t)xΔ(t)]Δ+λf(t,xσ(t))=0,t∈[a,σ(b)]∩T,αx(a)-βxΔ(a)=0,γx(σ(b))+δxΔ(σ(b))=0,其中f:[a,σ(b)]×[0,∞)→[0,∞)是连续的,对f赋予一定的条件,通过应用锥上的不动点定理,得到在λ某个区间上边值问题正解的存在性定理。文中把原有的方程二阶部分从xΔΔ(t)推广到[q(t)xΔ(t)]Δ,这里要求q(t)在[a,σ(b)]上有界,恒正。  相似文献   

13.
近年来,不少文章讨论积分中值定理中的中间点的渐近性质,并得到许多有趣的结果。但对于微分中值定理中间点的渐近性质,目前讨论甚少,本文主要讨论微分中值定理的中间点,并给它中间点的渐近估计式,结果为: 定理1 设f(x)在[a,b]上连续,(a,b)内可导,如果f(x)-f(a)是关于x—a的a阶无穷小,a≠1,则拉格朗日微分中值公式f(x)—f(a)=f(ξ)(x—a)中的中间点ξ  相似文献   

14.
定积分的第二中值公式有下列三个定理给出的三种形式。定理1 假设函数f(x)在闭区间[a,b]上单调减小(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得定理2 假设函数f(x)在闭区间[a,b]上单调增加(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得  相似文献   

15.
在学习了导数之后,要想运用导数这一概念去分析和解决更复杂的问题,只知道怎样计算导数还是不够的,还需要掌握微分中值定理,它是微分应用的桥梁,对微分中值定理有必要进行更深入的研究.微分中值定理包括三个定理:[1]罗尔(Rolle)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(b)=f(a),则在(a,b)内至少存在一点ξ,使得 f’(ξ)=0.[2]拉格朗日(Lagrange)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可  相似文献   

16.
积分中值定理的推广   总被引:7,自引:0,他引:7  
将Riemann积分中值定理中函数f(x)所满足的条件加以改进,得到如下积分中值定理:若函数f(x)是闭区间[α,b]上有原函数的可积函数,函数g(x)在[α,b]上可积且不变号,则存在ζ∈(α,b),使得∫α^b(x)g(x)dx=f(ζ)∫α^bg(x)dx。√a。a  相似文献   

17.
这文章证明了如下的积分基本定理: 假定f(x)是定义在区间[a,b]上的实函数,同时, (ⅰ) 它的右上导数D~+f(x)>-∝,右下导数D_+f(x)<∝,在(a,b)上至多除掉一个可列集Γ以外处处成立, (ⅱ) f(x)在(a,b]上处处在半连续, (ⅲ) 对所有的x∈Γ成立, (ⅳ) 存在一个L可测的实函数ψ(x),使D~+f(x)≥ψ(x)≥D_+f(x)在[a,b)上几乎处处成立,而且max{ψ(x),0}(或min(ψ(x),0})在[a,b]上可积,那末ψ(x)在[a,b]上可积;而且 这里,有关的积分概念可以是Lebesgue的,也可以是Perron的。定理关于ψ(x)这种函数可积分的判断有它独立的意义。证明中吸收了I.S.Gal的方法,同时弥补了原作者忽略的部份。 文章最后举例说明定理的几个条件的相互独立性和对于定理的成立的必要性。  相似文献   

18.
<正>在一般的高等数学或数学分析教科书中,著名的Newton-Leibniz公式由下述形式给出:定理设f(x)在[a,b]上连续,若在[a,b]上存在一可微函数F(x),使得F'(x)=f(x).则本文的目的是给出该定理的一种推广形式,即将上述定理中的F'(x)=f(x)换成f(x)是关于单调增加函数g(x)的导数,得到了与Riemann—Stieltjes积分有关的更一般的结论,并以上述定理为其特例.  相似文献   

19.
在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to ∞(f(x,y)dx)关于y∈[α,β]一致收敛,integral from a to ∞(f(x,y)dy)关于x∈[a,b]一致收敛,β,b是任意给定的数:β>α,b>a;(3)integral from a to ∞(dx) integral from α to ∞(|f(x,y)|dy),integral from α to ∞(dy) integral from a to ∞(|f(x,y)dx)至少有一个存在(有限)。那末  相似文献   

20.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号