共查询到20条相似文献,搜索用时 15 毫秒
1.
陈海英 《湖南工程学院学报(自然科学版)》2015,25(1):41-43,47
RBF神经网络具有收敛速度缓慢、全局搜索能力差等缺点,提出了一种基于遗传算法的RBF神经网络,经过自适应遗传算子参数优化,提高了RBF神经网络模型的预测精度,实现了非线性时间序列的预测.仿真实验结果表明,基于遗传算法的RBF网络预测模型非常适合非线性时间序列的预测,是可行的、精准的、有效的. 相似文献
2.
为了提高推荐算法的推荐性能,在序列建模过程中,针对循环神经网络(recurrent neural network,RNN)无法并行运算导致建模速度与准确度较低,以及在偏好预测过程中对用户不同阶段偏好没有动态融合的问题,提出了一种基于混合神经网络的序列推荐算法.在算法模型的用户交互序列建模阶段,考虑到用户近期偏好变化频繁... 相似文献
3.
基于RBF神经网络的水闸垂直位移时间序列预测模型 总被引:1,自引:0,他引:1
水闸垂直位移是水闸安全的重要特征之一.针对传统水闸垂直位移预测模型的不足,提出了基于RBF神经网络的时间序列预测模型,该模型克服了传统模型容易陷入局部极小和运算迭代量大的缺点,有效地提高学习速度,使得预测精度大大提高.利用Matlab的RBF神经网络工具箱建立了垂直位移时间序列预测模型,并应用于实际工程中,取得了较高的拟合预报精度. 相似文献
4.
吕佳 《重庆师范大学学报(自然科学版)》2004,21(1):30-32
提供了一种基于递推合成BP网络的非线性时间序列预测方法,并针对具体实例建立多变量时间序列模型.将其预测结果与灰色预测模型及常规BP网络的多变量时间序列预测模型的结果进行比较,其仿真实验结果表明该网络具有很强的学习特性和泛化能力,适合进行非线性时间序列建模及预测. 相似文献
5.
6.
金融股票市场是一个极其复杂的演化系统,因此对股价波动进行准确预测是投资者理性规避投资风险的重要渠道。本文首先通过构建科学性较强的自回归移动平均与支持向量机(ARIMASVM)模型分析一维金融时序数据的线性成分,对我国股价波动进行样本内预测并与真实数据作比较,再利用改进的支持向量机(TGDSVM)模型基于金融面板时序数据处理线性预测后剩余的非线性成分信息。采用平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对比例误差(MAPE)、回归指数(WIA)、百分标准误差(SEP)与Nash系数六个预测精度指标检验五只股票日收盘价的预测精度。仿真结果表明:改进的时间相关序列(ARIMA-TGD-SVM)股票价格混合预测模型可以很好的弥补传统支持向量机(SVM)模型对解决多分类问题存在困难和对大规模训练样本难以实施的不足,并有效解决其利用欧式距离表征时序数据内部真实相互关系不足的缺陷,能够为股市预测提供理论依据和实际应用奠定基础。 相似文献
7.
现有结合特征提取与预测模型的方法不能准确把握金融时间序列的混沌性与交互性,导致预测精度不高。针对此问题,提出一种基于二次分解与长短期记忆(long short term memory, LSTM)网络的金融时间序列预测算法。使用变分模态分解方法与集成经验模态分解方法依次解析金融时间序列数据,得到能表达数据混沌性特征的模态;将模态信息输入到融合有因子分解机(factorization machine, FM)的长短期记忆网络模型中,融合获取到的长记忆性特征与交互性特征,进而预测最终的结果;选取沪深300指数的历史数据作为实验数据集,通过多组对比实验验证算法的有效性。实验结果表明,提出的算法可以有效提升模型的预测能力,同时表达金融时间序列的混沌性、长记忆性、交互性。 相似文献
8.
时间序列在故障诊断中的应用 总被引:18,自引:0,他引:18
提出了一种用时间序列理论进行故障诊断的方法,可以在缺乏对实际故障机理了解的情况下从机组自身的运行过程中动态获取故障的统计特征信息,识别机组运行的状态。这种方法先对实际机组的振动信号建立时间序列模型,然后用模型参数来训练一个模式识别神经网络作为故障诊断的工具。实验结果表明,这种方法有很好的实用性。 相似文献
9.
在时序数据中发现隐藏的异常行为或事件,可以保障生产安全,具有重要意义。目前的异常检测模型存在训练不稳定、容易产生梯度消失的问题,影响异常检测效果,针对该问题,提出一种LSTM-WGAN模型,WGAN负责捕获变量之间的潜在关联,进一步提升了LSTM的检测能力。同时,以Wasserstein距离代替交叉熵损失训练判别器和生成器,结合重构损失以及判别损失实现异常检测。在NAB公开数据集上的实验结果表明LSTM-WGAN相较于基准模型在准确率、召回率以及F1得分上都有较大幅度的提升。 相似文献
10.
本文提出用∑-π自反馈神经网络辨识时间序列。每个神经元的输出取决于现时的输入及前面的输出和过去的输入。使网络呈现动态系统性。用它能逼近一个复杂的函数。 相似文献
11.
受最大功率点跟踪算法和时变环境条件的影响,光伏阵列的电气工作参数包含了复杂的暂态过程以及工频干扰噪声,严重影响了故障特征质量以及诊断算法性能。针对该问题,本文首先提出了一种基于最大功率点(MPP)的稳态时间序列预处理方法,以自动过滤数据中的暂态过程和干扰噪声,获取连续的稳态时间序列电气特征数据,作为故障诊断模型的输入参数;然后,提出了一种基于长短期记忆网络(LSTM)的深度网络模型,以实现对光伏阵列常见故障的检测及分类;最后,在一个小型光伏并网发电系统及其Simulink仿真模型上,进行故障模拟及仿真以验证所提出的故障诊断方法。实验结果表明所提出的故障诊断方法具有良好的精度和泛化性能,并且优于常规的反向传播神经网络(BPNN)和循环神经网络(RNN)。 相似文献
12.
时间序列预测模型研究简介 总被引:4,自引:0,他引:4
在对时间序列预测模型的发展进行综述的基础上,就时间序列分析法的研究方法、理论意义、实际应用以及进一步的工作进行了阐述,使对该研究方向的理论、方法和应用有一个较清晰的了解。 相似文献
13.
桂林市汽车销售量的时间序列预测模型 总被引:2,自引:0,他引:2
选取1999年1月到2007年3月桂林市各季度的汽车销售量原始数据,在SPSS系统下,运用滑动求和自回归(ARIMA)方法及非参数方法建立桂林市汽车销售量时间序列模型ARIMA(p,d,q),从模型识别、参数估计、适应性检验和实际拟合4个方面来确定模型的参数(p,d,q),并对模型的预测效果进行检验。结果表明,ARIMA(0,2,2)模型能够较好地包含桂林市汽车销售量的发展趋势,该模型对2007年2季度至2008年2季度汽车销售量的预测值与实际值的误差小,相对误差可以控制在3%以内。 相似文献
14.
采用时间序列分析方法拟合具有趋势性和季节性的流域水体中氟化物含量并进行预测.利用清水江流域2013—2018年的每月氟化物监测数据,用差分和季节差分方法对监测数据进行平稳化,采用ARIMA乘积季节模型(p,d,q)(P,D,Q)s拟合序列,应用残差和BIC进行模型参数调整,建立氟化物时间序列预测模型,并对测试集月均氟化... 相似文献
15.
针对双阶段注意力自编码神经网络(DA-RNN)时间序列预测算法对随机数据预测效果较差和长时间预测中存在的累积误差问题进行改进,设计了一种基于生成式对抗网络(GAN)的时间序列预测算法.该算法以DA-RNN网络为生成网络,利用生成网络和判别网络之间的互补特性,消除DA-RNN网络对于长时间预测过程中存在的累积误差问题;引... 相似文献
16.
有效的销售预测利于企业制定正确的营销策略,针对当前销售预测研究中存在无法进行实时在线多任务销售预测、稳定获取序列数据中的时序特征等问题,提出了一种基于CNN-LSTM网络的在线多任务销售预测模型.该模型上层CNN网络抽取得到重要的时序数据特征,进而输入到下层LSTM网络中进一步抽取复杂的不规则特征进行建模,最终得到预测... 相似文献
17.
针对混沌时间序列难以预测和控制问题,提出了基于趋势的混沌预测模型,利用混沌系统的初值、参数敏感性来微调和控制系统扰动,并用改进的最优化方法估计模型的参数,在其相空间中对时序未来值进行预测.算例表明,选取最佳的模型阶数能增加预测的准确程度,它不仅克服了仅用延迟嵌入技术的弊端,也降低了直接使用预测误差决定输入模式的盲目性.预测效果比其他时序方法要好. 相似文献
18.
时间序列异常检测是类别不均衡问题,异常现象少有发生,所以获取异常标签的成本高昂,因此基于无监督学习的时间序列异常检测方法更具有实用价值.然而,现有的时间序列异常检测方法存在三个缺陷:难以对复杂的时间序列进行建模、缺乏合理的缺失值处理机制和无法利用先验知识(例如少量的有标签异常).为了解决以上问题,提出一种基于生成对抗神... 相似文献
19.