首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Tautz 《Nature》1988,332(6161):281-284
Segmentation in the inset embryo is initiated by maternally provided information, which is stored in the developing oocyte. In Drosophila, the genes necessary for this process have been genetically characterized. The anterior segmented region is organized by the bicoid (bcd) gene product. The posterior segmented region is organized by several interacting gene products, among them the oskar (osk) gene product. The first zygotic group of genes, which are thought to respond to the spatial cues provided by the maternal genes, are the gap genes, whose members include hunchback (hb), Krüppel (Kr) and knirps (kni). To elucidate the role played by the maternal genes in expression of the gap gene hb, antibodies were raised against a fusion protein and were used for the cytological localization of the hb gene product in wild-type and mutant embryos. The hb protein is predominantly located in the nucleus. Its spatial expression includes the formation of an anterior-posterior gradient during the early cleavage stages and a strong zygotic expression in the anterior half of the embryo. Analysis of embryos mutant for the maternal genes affecting the anterior-posterior segmentation pattern shows that the formation of the early gradient is controlled by the osk group of genes, whereas efficient activation of the zygotic anterior expression domain is dependent on bcd activity.  相似文献   

2.
R Finkelstein  N Perrimon 《Nature》1990,346(6283):485-488
In the Drosophila embryo, cell fate along the anterior-posterior axis is determined by maternally expressed genes. The activity of the bicoid (bcd) gene is required for the development of larval head and thoracic structures, and that of maternal torso (tor) for the development of the unsegmented region of the head (acron). In contrast to the case of thoracic and abdominal segmentation, the hierarchy of zygotically expressed genes controlling head development has not been clearly defined. The bcd protein, which is expressed in a gradient, activates zygotic expression of the gap gene hunchback (hb), but hb alone is not sufficient to specify head development. Driever et al. proposed that at least one other bcd-activated gene controls the development of head regions anterior to the hb domain. We report here that the homeobox gene orthodenticle (otd), which is involved in head development, could be such a gene. We also show that otd expression responds to the activity of the maternal tor gene at the anterior pole of the embryo.  相似文献   

3.
4.
M J Pankratz  M Hoch  E Seifert  H J?ckle 《Nature》1989,341(6240):337-340
Segmental pattern formation in Drosophila proceeds in a hierarchical manner whereby the embryo is stepwise divided into progressively finer regions until it reaches its final metameric form. Maternal genes initiate this process by imparting on the egg a distinct antero-posterior polarity and by directing from the two polar centres the activities of the zygotic genes. The anterior system is strictly dependent on the product of the maternal gene bicoid (bcd), without which all pattern elements in the anterior region of the embryo fail to develop. The posterior system seems to lack such a morphogen. Rather, the known posterior maternal determinants simply define the boundaries within which abdominal segmentation can occur, and the process that actively generates the abdominal body pattern may be entirely due to the interactions between the zygotic genes. The most likely candidates among the zygotic genes that could fulfil the role of initiating the posterior pattern-forming process are the gap genes, as they are the first segmentation genes to be expressed in the embryo. Here we describe the interactions between the gap genes Krüppel (Kr), knirps (kni) and tailless (tll). We show that kni expression is repressed by tll activity, whereas it is directly enhanced by Kr activity. Thus, Kr activity is present throughout the domain of kni expression and forms a long-range protein gradient, which in combination with kni activity is required for abdominal segmentation of the embryo.  相似文献   

5.
V Irish  R Lehmann  M Akam 《Nature》1989,338(6217):646-648
The development of the body plan in the Drosophila embryo depends on the activity of maternal determinants localized at the anterior and posterior of the egg. These activities define both the polarity of the anterior-posterior (AP) axis and the spatial domains of expression of the zygotic gap genes, which in turn control the subsequent steps in segmentation. The nature and mode of action of one anterior determinant, the bicoid(bcd) gene product, has recently been defined, but the posterior determinants are less well characterized. At least seven maternally acting genes are required for posterior development. Mutations in these maternal posterior-group genes result in embryos lacking all abdominal segments. Cytoplasmic transplantation studies indicate that the maternally encoded product of the nanos(nos) gene may act as an abdominal determinant, whereas the other maternal posterior-group genes appear to be required for the appropriate localization and stabilization of this signal. Here we show that the lack of the nos gene product can be compensated for by eliminating the maternal activity of the gap gene hunchback (hb). Embryos lacking both of these maternally derived gene products are viable and can survive as fertile adults. These results suggest that the nos gene product functions by repressing the activity of the maternal hb products in the posterior of the egg.  相似文献   

6.
J Treisman  C Desplan 《Nature》1989,341(6240):335-337
The first zygotic genes to be expressed during early Drosophila development are the gap genes. Their role is to read and interpret coarse positional information deposited in the egg by the mother and to refine it by cross-regulatory interactions and by controlling a class of pair-rule genes. Little is known about the molecular mechanisms by which the three cloned gap genes carry out their genetically defined functions. Here we report that the Krüppel (Kr) gene product (Kr) binds to the sequence AAGGGGTTAA, whereas the hunchback (hb) gene product (Hb) recognizes the consensus ACNCAAAAAANTA. We have identified binding sites for these proteins upstream of the two hb promoters, which we suggest could mediate the repression of hb by Kr and perhaps allow hb to influence its own expression.  相似文献   

7.
Houchmandzadeh B  Wieschaus E  Leibler S 《Nature》2002,415(6873):798-802
During embryonic development, orderly patterns of gene expression eventually assign each cell in the embryo its particular fate. For the anteroposterior axis of the Drosophila embryo, the first step in this process depends on a spatial gradient of the maternal morphogen Bicoid (Bcd). Positional information of this gradient is transmitted to downstream gap genes, each occupying a well defined spatial domain. We determined the precision of the initial process by comparing expression domains in different embryos. Here we show that the Bcd gradient displays a high embryo-to-embryo variability, but that this noise in the positional information is strongly decreased ('filtered') at the level of hunchback (hb) gene expression. In contrast to the Bcd gradient, the hb expression pattern already includes the information about the scale of the embryo. We show that genes known to interact directly with Hb are not responsible for its spatial precision, but that the maternal gene staufen may be crucial.  相似文献   

8.
Lynch JA  Brent AE  Leaf DS  Pultz MA  Desplan C 《Nature》2006,439(7077):728-732
The Bicoid (Bcd) gradient in Drosophila has long been a model for the action of a morphogen in establishing embryonic polarity. However, it is now clear that bcd is a unique feature of higher Diptera. An evolutionarily ancient gene, orthodenticle (otd), has a bcd-like role in the beetle Tribolium. Unlike the Bcd gradient, which arises by diffusion of protein from an anteriorly localized messenger RNA, the Tribolium Otd gradient forms by translational repression of otd mRNA by a posteriorly localized factor. These differences in gradient formation are correlated with differences in modes of embryonic patterning. Drosophila uses long germ embryogenesis, where the embryo derives from the entire anterior-posterior axis, and all segments are patterned at the blastoderm stage, before gastrulation. In contrast, Tribolium undergoes short germ embryogenesis: the embryo arises from cells in the posterior of the egg, and only anterior segments are patterned at the blastoderm stage, with the remaining segments arising after gastrulation from a growth zone. Here we describe the role of otd in the long germband embryo of the wasp Nasonia vitripennis. We show that Nasonia otd maternal mRNA is localized at both poles of the embryo, and resulting protein gradients pattern both poles. Thus, localized Nasonia otd has two major roles that allow long germ development. It activates anterior targets at the anterior of the egg in a manner reminiscent of the Bcd gradient, and it is required for pre-gastrulation expression of posterior gap genes.  相似文献   

9.
10.
G Struhl 《Nature》1989,338(6218):741-744
Opposing anterior and posterior morphogen systems specify the segmented body pattern of Drosophila. The anterior morphogen, bicoid, exerts a direct, instructive influence on head and thoracic pattern by triggering different outcomes according to changes in its concentration along the body. In contrast, the posterior morphogen, nanos, simply defines where abdominal patterning can occur by eliminating an otherwise ubiquitous repressor, hunchback protein, from the posterior half of the embryo. Within this hunchback-free domain the pattern of abdominal segments must be specified by other morphogens, possibly by shorter range gradients of the products of zygotic gap genes Kruppel, knirps and tailless.  相似文献   

11.
Schröder R 《Nature》2003,422(6932):621-625
  相似文献   

12.
13.
14.
The Drosophila gene torso encodes a putative receptor tyrosine kinase   总被引:27,自引:0,他引:27  
The maternal gene torso, required for determination of anterior and posterior terminal structures in the Drosophila embryo, was cloned using P-element tagging. Genetic evidence suggests that the action of the gene product is spatially restricted to the terminal regions; the torso messenger RNA, however, is evenly distributed. Structural similarities of the predicted torso protein with growth-factor receptor tyrosine kinases suggest that the spatial restriction of torso activity results from a localized activation of the torso protein at the anterior and posterior egg pole.  相似文献   

15.
W Driever  G Thoma  C Nüsslein-Volhard 《Nature》1989,340(6232):363-367
The maternal gene bicoid is a key component of the system that determines the pattern of the anterior half of Drosophila embryos. The bicoid protein forms a concentration gradient in early embryos, and is known to bind DNA. Specific binding sites are now shown to confer expression in a region of the embryo that depends on their affinity for bicoid protein: sites of high affinity allow expression further down the bicoid protein gradient than sites of low affinity.  相似文献   

16.
17.
Requirement of the Drosophila raf homologue for torso function   总被引:17,自引:0,他引:17  
L Ambrosio  A P Mahowald  N Perrimon 《Nature》1989,342(6247):288-291
In Drosophila the correct formation of the most anterior and posterior regions of the larva, acron and telson is dependent on the maternally expressed terminal class of genes. In their absence, the anterior head skeleton is truncated and all the structures posterior to the abdominal segment seven are not formed. The protein predicted to be encoded by one of these genes, torso (tor), seems to be a transmembrane protein with an extracytoplasmic domain acting as a receptor and a cytoplasmic domain containing tyrosine kinase activity. Here we report that another member of the terminal-genes class, l(1)polehole (l(1)ph), which is also zygotically expressed, is the Drosophila homologue of the v-raf oncogene and encodes a potential serine-and-threonine kinase. We also show that functional l(1)ph gene product is required for the expression of a gain-of-function tor mutant phenotype, indicating that l(1)ph acts downstream of tor. Together, these results support the idea that the induction of terminal development occurs through a signal transduction system, involving the local activation of the tor-encoded tyrosine kinase at the anterior and posterior egg poles, resulting in the phosphorylation of the l(1)ph gene product. In turn, downstream target proteins may be phosphorylated, ultimately leading to the regionalized expression of zygotic target genes. Such a process is in agreement with the finding that both tor and l(1)ph messenger RNAs are evenly distributed.  相似文献   

18.
19.
P M Macdonald  G Struhl 《Nature》1986,324(6097):537-545
After fertilization, the protein products of the Drosophila homeobox gene caudal (cad) accumulate in a concentration gradient spanning the anteroposterior axis of the developing embryo. Mutations in the cad gene that reduce or eliminate the gradient cause abnormal zygotic expression of at least one segmentation gene (fushi tarazu) and alter the global body pattern.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号