首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种面向分类的核局部线性嵌入算法   总被引:2,自引:0,他引:2  
局部线性嵌入算法(LLE)已被广泛运用于模式分类,但它存在两个缺点。首先LLE是一种无监督学习方法,没有很好地利用类别信息;其次,LLE算法假设数据在局部上的分布是线性的,如数据非线性分布则效果有限。对此,提出了一种解决分类问题的核局部线性嵌入算法。利用KLLE算法的思想寻找样本的内在流形分布,并通过重构误差来判定该样本的类别。所提方法考虑了样本的类别信息,也适合于处理局部非线性分布的数据。在Yale人脸库的实验结果验证了其有效性。  相似文献   

2.
针对局部线性嵌入算法使用欧氏距离计算非对齐样本相似性时, 受数据位置差影响较大, 导致度量精度较低, 影响算法特征提取精度的问题, 提出一种基于信息熵度量的局部线性嵌入算法. 首先利用信息熵统计样本特征间的混乱程度, 提高划分局部邻域的准确性; 然后建立局部重构模型, 挖掘出流形的本质结构; 最后利用局部结构构建低维重构模型, 以获得样本的显著特征. 通过在轴承数据集上的实验证明了该算法在特征提取方面的有效性.  相似文献   

3.
故障样本具有复杂多样性,而不同故障类型存在于不同维数的多流形子空间中,将样本统一降维到同一维数的单流形上则不能进行高效的特征提取.提出了一种基于局部线性嵌入(Local Linear Embedding,LLE)的多流形学习(Multi-LLE)故障诊断方法,将单流形故障诊断方法扩展到多流形,首先利用Multi-LLE分别提取各故障数据集在其本征维数流形上的特征,再通过各特征向量的聚类中心与故障新样本在不同维数下的嵌入向量的距离比较,将距离最近者归为一类实现分类识别.利用转子实验故障数据对算法进行了验证,并将Multi-LLE方法与LLE和海赛局部线性嵌入(HLLE)方法进行了比较,结果表明该方法能够有效的实现故障诊断.  相似文献   

4.
提高人脸识别算法的识别率,提出一种基于半监督局部线性嵌入(Semi-Supervised Locally Linear Embedding,SSLLE)的人脸图像识别方法。针对局部线性嵌入(Locally Linear Embedding,LLE)算法非监督学习的缺陷,引入半监督思想,在构造邻域的时候利用部分样本的标签信息来重新调整距离矩阵;使用调整后的距离矩阵进行线性重建从而实现数据降维。在Yale和ORL人脸库上的实验结果表明,能有效的提高人脸识别的性能。  相似文献   

5.
时间序列聚类是时间序列数据挖掘中重要的研究内容之一。由于时间序列的维数比较大,直接对时间序列原始数据进行聚类性能不理想,如何有效的对时间序列进行维数约简,并且保持原数据集本质特征,是本论文的主要研究点。首先使用局部线性嵌入(LLE)对时间序列样本维数约简,在低维空间对维数约简后的数据进行聚类,然后将它的聚类性能与已有方法如主成分分析(PCA)、分段聚合近似(PAA)进行比较。实验表明,使用LLE更能提高聚类性能。  相似文献   

6.
随着计算视觉技术的发展,面向视频的人脸识别在现实生活中应用愈加广泛,作用愈加重要,对识别的准确性要求也越高.面对视频这样的高维度数据,如何进一步提高人脸识别的准确性是该领域的一个研究热点.本文提出一种面向视频数据的改进的局部线性嵌入算法,通过构造样本间的协方差矩阵,将马哈拉诺比斯距离和像素距离相结合,提出了一种新的样本间的相似性度量方法,该方法充分利用了视频帧间信息的关联性.并在VidTIMIT数据集上进行识别效果的测试,同时与其它几类识别方法的实验结果进行对比.实验结果表明,本文提出的算法的识别率要高于已有的局部线性嵌入算法和其它方法.  相似文献   

7.
核局部线性嵌入法是一个优异的流形学习方法,对于非线性高维数据的降维问题,具有较好的效果。但是算法本身是一个无监督学习方法,对于模式分类等有监督学习问题效果不是很好。通过分析监督学习问题的机理,提出了一种有监督的核函数局部线性嵌入算法,数值实验证明算法对于有监督学习问题,具有较好的效果。  相似文献   

8.
小世界邻域优化的局部线性嵌入算法   总被引:1,自引:0,他引:1  
通过分析稀疏数据或噪声数据,导出局部线性嵌入(LLE)算法出现失效的原因,由此提出了一种基于小世界邻域优化的局部线性嵌入(SLLE)算法.将复杂网络算法引入到流形学习中,利用小世界算法对LLE算法进行数据优化,并以最短路径和局部集群系数作为局部优化参数,解决了数据点不规则时以欧氏空间作为邻域判别标准在构建局部超平面造成嵌入结果扭曲的难题.通过3组标准测试数据集合比较了SLLE、LLE算法,结果表明SLLE算法的计算效果、鲁棒性、非理想数据的降维结果均优于LLE算法,且计算正确率至少提高10%.  相似文献   

9.
针对基于能量耗损的齿轮故障模式识别问题,将监督学习与局部主成分分析结合,提出了一种改进的能有效提取数据低维流形结构与分类特征的局部线性嵌入算法.然后,分析了齿轮摩擦学系统能量耗损与能量耗损的故障模式识别方法.最后,以齿轮箱能量监测实验台为例,获取不同齿轮故障下输入能量耗损功率的变化,应用改进的局部线性嵌入算法进行故障的功率耗损降维与模式识别,通过多类支持向量机分类的准确率来判断分类的效果.研究表明,改进的局部线性嵌入算法有较高的识别率,是一种有效的齿轮能量耗损故障模式识别方法.  相似文献   

10.
利用局部线性嵌入的模态识别   总被引:3,自引:0,他引:3  
提出了一种新的利用局部线性嵌入的模态识别方法。该方法以流形学习为理论基础,从提取结构的几何或固有特征出发,以系统结构的响应数据为分析对象,可识别出结构的模态参数。该方法的基本思想是,将结构的响应看作一个高维数据集,将系统的模态看作高维数据集的本质结构与固有特征,然后通过求解数据的低维嵌入进行模态参数识别。圆柱壳仿真结果表明:提出的利用局部线性嵌入的模态识别方法能够有效地进行模态参数识别;随着阻尼系数的增加,对于贡献量较大的模态,利用局部线性嵌入的识别效果优于基于主成分分析的识别效果。  相似文献   

11.
提出了一种改进的局部线性嵌入超分辨率重建算法.该算法着重对局部线性嵌入超分辨率重建算法三个方面做了改进:特征选取,用图像块的DCT系数来取代图像块的l阶、2阶梯度作为图像块的特征描述,可以减弱噪声的影响;邻近块的数目,根据图像块与周围图像块的关系自适应的选取邻近块的数目,可以避免将距离较远的块选为邻近块;样本库的训练过程,用高分辨率图像与低分辨率图像的残差图像作为高分辨率图像的训练样本,这样既可以避免低频分量的干扰,又可以减少在计算过程中的平滑次数.实验结果表明这种改进的算法比原算法的重建效果有了较大程度的提高:PSNR提高4.07 dB,SSIM提高0.0654;比稀疏重建算法PSNR提高0.62 dB,SSIM提高0.0066,而且用DCT系数作为图像块的特征表示,每一个图像块所需要提取的特征数比用1阶、2阶梯度减少了四分之三,降低了算法的复杂度.  相似文献   

12.
针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on shared neighbors, SN-WLLE)算法,并用于滚动轴承故障诊断.该算法首先使用余弦距离划分样本邻域;其次计算样本邻域对相似度用以评估样本共享近邻信息,并结合样本的6种邻居分布修正局部结构挖掘,提高多共享近邻的k近邻重构准确性;接着从多流形的角度评估样本点与近邻点间的稀疏分布一致性,以获得样本的重要性指标,并在低维空间保持该信息,进而提取准确的鉴别特征;最后结合KNN分类器构建出完备的轴承故障诊断模型.采用凯斯西储大学轴承数据集和实验室测试平台轴承数据集,从可视化评估、定量聚类评估、故障识别精度评估及鲁棒性评估等方面进行分析.结果表明:SN-WLLE算法的F值保持在108以上水准,平均故障识别精度最低可达0.973 4,不仅具有较好的类内紧致性与类间可分性,还对近邻参数k具有低敏感性.  相似文献   

13.
基于局部线性嵌入的半监督仿射传播聚类算法   总被引:1,自引:0,他引:1  
针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再用半监督算法调整相似度矩阵,最后用仿射传播聚类算法对低维数据进行聚类分析.仿真结果表明,本文提出的算法与半监督仿射传播聚类算法相比,在处理高维数据时聚类效果更好,精度更高,迭代次数更少.  相似文献   

14.
为解决现有局部线性嵌入算法不适合处理非均匀分布数据和未利用距离远点信息的问题,首先引入测地线距离,以便能利用远点信息;然后使用调和平均规范化构造调和平均测地线核矩阵,使算法能更好地处理分布不均匀数据并具有鲁棒性。在UCI数据集上的实验结果表明,改进后的算法能够取得比局部线性嵌入算法更好的降维效果。  相似文献   

15.
视频轨迹为视频图像的自动化分析提供了新的工具.为此,提出了基于时空扩展局部线性嵌入的视频轨迹描绘算法.该算法首先将视频片段分割成连续的视频子序列,利用视频子序列的非平凡k近邻来捕获具有时空约束的相似视频序列模式;然后在每个视频子序列与其非平凡k近邻之间构造重构权;最后利用重构权计算视频子序列的低维嵌入向量,从而获得视频...  相似文献   

16.
一种自适应局部线性嵌入与谱聚类融合的故障诊断方法   总被引:3,自引:1,他引:3  
针对数据维数高、非线性且从高维观测空间分析数据模式困难的问题,将改进的流形学习算法引入到数据聚类中,提出了一种结合自适应局部线性嵌入和递归调用规范切融合的新方法.采用自适应局部线性嵌入对原始数据进行非线性降维,应用递归调用规范切对低维空间数据进行聚类,通过对3组UCI标准测试数据集的仿真实验表明,新方法能够将高维数据有效地映射到低维本质空间,克服了传统方法对数据集结构的依赖性,从而显著提高了谱聚类算法分类的准确性和稳定性.同时,对于田纳西-伊斯曼过程的数据实验,表明了该方法对故障模式识别的可行性和有效性.  相似文献   

17.
基于局部线性嵌入(LLE)非线性降维的多流形学习   总被引:6,自引:0,他引:6  
为了研究多人脸多表情数据集的多流形学习问题,提出了一种基于局部线性嵌入(LLE)算法的多流形学习方法.对于分布在不同流形上的高维数据,该方法在降维的同时首先对数据集进行非监督的聚类,然后分析每一类数据的低维流形的本质维数以及流形空间的构成,聚类及流形空间的确定是通过对LLE降维的结果进行分析而完成的,计算复杂度小.在Cohn-Kanade人脸表情数据库上的表情识别实验表明,该方法在多人脸多表情流形的学习中优于基本的LLE算法,表情的识别率提高了20%~40%.  相似文献   

18.
空间听觉重建中,头相关传输函数(head-related transfer function,HRTF)庞大的数据量是影响虚拟声源合成效率的主要因素之一.为了减少HRTF的数据存储,提出一种局部线性嵌入(locally linear embedding,LLE)空间听觉重建方法.通过LLE对高维HRTF数据进行降维,在低维数据空间提取与方位感知相关的特征,然后利用聚类算法进行分类,得到特征HRTF,而其余非特征HRTF则可以利用特征HRTF通过改进插值算法进行重构.与现有的主成分分析法(principal component analysis,PCA)相比,利用LLE降维后的数据保留了更多的感知信息,利用HRTF数据间的内在关系,对插值后的数据进行修正,可减少重建误差.仿真结果表明,该方法能够有效地减少HRTF的存储数据量,有利于提高虚拟声源的合成效率.  相似文献   

19.
深入探讨了流形学习算法中的局部线性嵌入算法(Locally Linear Embedding,简称LLE),在此基础上提出有监督学习的LLE算法,并把它应用于人脸表情识别中,只需构造简单的最小距离分类器,就能取得较好的识别率.  相似文献   

20.
证明了p元有限域上的有限线性群和辛群在某些条件下可线性地嵌入到该基域上的半线性群和半线性辛群中,所得结果改进了相应的经典嵌入定理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号