首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用锥上的不动点指数理论,考虑一般三阶常微分方程■正2π-周期解的存在性,其中:■是三阶常微分算子;■连续,f(t,x,y,z)关于t以2π为周期.在非线性项f满足一些易验证的不等式条件下,允许f(t,x,y,z)关于x,y,z满足超线性或次线性增长,得到了该方程正2π-周期解的存在性结果.  相似文献   

2.
本文研究了带有导数项的非线性Newmann问题{u"(t)+ku(t)=f(t,u(t),u'(t)),t∈(0,1),u'(0)=u'(1)=0正解的存在性,其中0k≤π~2/4,f:[0,1]×R~+×R→R~+连续.当函数f(t,x,y)关于x和y满足一定的超线性增长条件及Nagumo条件时,本文得到了问题正解的存在性.主要结果的证明基于不动点指数理论.  相似文献   

3.
本文讨论了2n阶微分方程u~(2n)(t)=f(t,u(t),u′(t),…,u(2n-1)(t)),t∈R奇2π-周期解的存在性,其中n是正整数,f:R×R~(2n)→R连续且关于t是以2π为周期的奇函数.运用Leray-Schauder不动点定理与Fourier分析的方法,本文在允许非线性项f超线性增长的条件下获得了该方程的奇2π-周期解.  相似文献   

4.
讨论了2n阶常微分方程u~(2n)(t)=f(t,u(t),u″(t),…,u~(2n-2)(t)),t∈R奇2π-周期解的存在性,其中n是正整数,f:R×R~n—→R连续且关于t是以2π为周期的奇函数.运用Leray-Schauder不动点定理与Fourier分析方法,在允许非线性项f超线性增长的条件下,获得了该方程的奇2π-周期解.  相似文献   

5.
获得了非线性函数带有导数项的二阶周期边值问题{u″(t)+au(t)=f(t,u(t),u'(t)),〓t∈[0,1],u(0)=u(1), u'(0)=u'(1)正解的存在性, 其中(π2)/4π2, f:[0,1]×R+×R→R+连续。 f(t,x,y)满足Nagumo条件, 且关于 x 和 y 满足一定的超线性增长条件。针对超线性情形, Nagumo条件关于y严格控制了f的增长。主要结果的证明基于不动点指数理论。  相似文献   

6.
运用Leray-Schauder 不动点定理,讨论四阶周期边值问题{u(4)(t)=f(t,u(t), u'(t)), t∈[0,1],u(i)(0)=u(i)(1), i=0,1,2,3解的存在性与唯一性,其中f:[0,1]×R2→R连续。在允许非线性项f(t,x,y)关于x、y超线性增长的不等式条件下,获得了该问题解的存在性与唯一性。  相似文献   

7.
研究2n阶非线性常微分方程周期边值问题{u(2n)(t)+au(t)=f(t,u(t),u′(t),…,u(2n-1)(t)),t∈I,u(i)(0)=u(i)(2π),i=0,1,…,2n-1解的存在唯一性,其中n≥1是整数,I=[0,2π],(-1)na0,f:I×R2n—→R连续且关于t以2π为周期.运用Fourier分析法和Leray-Schauder不动点定理,获得了当非线性项f满足适当增长条件时,该问题解的存在唯一性结果.  相似文献   

8.
讨论完全三阶边值问题{u?(t)=f(t,u(t),u'(t),u″(t)),t∈[0,1],u(0)=u'(1)=u″(1)=0解的存在性,其中f:[0,1]×R3→R连续.通过建立极大值原理,在非线性项f(t,x,y,z)关于x,y,z满足单调性条件的情形下,运用上下解的单调迭代方法,获得了解的存在性结果.  相似文献   

9.
研究了非线性项中含有时滞导数项的高阶常微分方程u~((n))(t)+a(t)u(t)=f(t,u(t-τ_0(t)),u′(t-τ_1(t)),…,u~((n-1))(t-τ_(n-1)(t))),t∈R正ω-周期解的存在性,其中n≥2,a:R→(0,∞)连续以ω为周期,f:R×[0,∞)×R~(n-1)→[0,∞)连续,关于t以ω为周期,τ_k:R→[0,∞)连续以ω为周期,k=0,1,…,n-1。运用正算子扰动方法和锥上的不动点指数理论,获得了该方程正ω-周期解的存在性结果。  相似文献   

10.
本文讨论如下二阶非线性常微分方程组边值问题■解的存在唯一性,其中f,g:[0,1]×R×R→R连续.当非线性项f(t,x,y)与g(t,x,y)满足相应的不等式时,本文运用Leray-Schauder不动点定理获得了该问题解的存在唯一性.  相似文献   

11.
讨论完全2n阶常微分方程u(2n)(t)=f(t,u(t),u′(t),…,u(2n-1)(t))奇周期解的存在性与唯一性,其中n是正整数,f:R×R~(2n)→R连续且关于t以2π为周期.应用Fourier分析法和Leray-Schauder不动点定理,在非线性项f满足适当增长的条件下,获得了该方程奇2π周期解的存在性与唯一性.  相似文献   

12.
用全连续算子与压缩算子和的Krasnoselskii不动点定理研究高阶中立型时滞微分方程d~n/dt~n(u(t)-cu(t-δ))+M(u(t)-cu(t-δ))=f(t,u(t-τ_1),…,u(t-τ_m))正2π-周期解的存在性,其中:δ0;0c1;M0为常数;f:R×[0,∞)~m→[0,∞)连续,关于t以2π为周期;τ_1,τ_2,…,τm≥0为常数,获得了该方程正周期解的存在性与多重性结果.  相似文献   

13.
运用Leray-Schauder非线性抉择定理研究了一类无穷区间上含有p Laplacian算子的n阶微分方程积分边值问题:﹛(φp(x(n-1)))′(t)+a(t)f(t,x(t),x′(t))=0,0t+∞,x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=xn-2(0)=0,t→+∞lim x(n-1)(t)=0解的存在性,其中η∈[0,+∞),α∈[0,+∞)且f∈C([0,+∞)×R×R,[0,+∞))。  相似文献   

14.
二阶Hamilton系统:-=f(t,x)满足初始条件x(t)≥0,t∈R,且当x(t0)=0时,(t0-)=(t0+)=,在一定条件下,等价于系统{-=f(t,|x|)sgn(x),x(0)-x(2π)=(0)-(2π)=0{-=f(t,|x|)sgn(x),x(0)-x(2π)=(0)-(2π)=0本文使用非光滑情形下的一个新临界点定理得到系统(Ⅰ)或(Ⅱ)的一个周期解,进而得到二阶Hamilton系统的一个满足所述初始条件的解的存在性定理.  相似文献   

15.
考虑塑性流体的下列边界退化椭圆问题f1(u)uxx+uyy+g(u)|▽u|q+f(u)=0,(x,y)∈Ωu|Ω=0,(x,y)∈Ω经典解的存在性及其正则性.其中Ω={(x,y):x2+y2<1}R2,0相似文献   

16.
讨论完全三阶边值问题{-u''(t)=f(t,u(t),u'(t),u″(t)),t∈[0,1],u(0)=u'(0)=u″(1)=0解的存在性与唯一性,其中f:[0,1]×R~3→R连续.在非线性项f(t,x,y,z)关于z满足适当的Nagumo条件下,运用特殊的截断技巧、Leray-Schauder不动点定理及上下解方法,获得了该方程解的存在性与唯一性结果.  相似文献   

17.
利用重合度理论,研究一类具有偏差变元的二阶微分方程x″+f(t,x′(t))+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.其中,f,g∈C(R×R,R),且对任意的x∈R,g(t+ω,x)=g(t,x),p∈C(R,R),τ∈C(R,R)是ω-周期的.在不要求对所有的y∈R,函数f(t,y)≤0(f(t,y)≥0),t∈R的情况下,得到该类方程至少存在一个ω-周期解的充分条件.  相似文献   

18.
设f(x,y)是对每个变量都是以2π为周期的实函数,首先给出了二元Λ有界变差函数的概念.在区域T2=[-π,π]×[-π,π]上讨论二元Λ有界变差函数f(x,y)的Fourier级数的系数∧f(m,n)阶的估计.若f(x,y)∈ABV(T2)在(0,2π]×[0,2π]区域上连续,给出并证明了f(x,y)的Fourier级数绝对收敛的充要条件.  相似文献   

19.
讨论一类完全非线性四阶微分方程■正周期解的存在性,其中,a(t)∈C([0,ω],(0,+∞)),f∈C([0,ω]×[0,+∞)×R3,[0,+∞)).在允许非线性项满足超线性增长不等式条件的情况下,利用Green函数和锥上的不动点理论,获得上述四阶微分方程正周期解的存在性结果,并通过例子验证了主要结果的有效性.  相似文献   

20.
研究一类Caputo分数阶微分方程边值问题:{D_0~α+u(t)+f(t,u(t))=0,t∈(0,1),u′(0)=u(1)=0,多解的存在性,其中1α≤2,f:[0,+∞)×R→[0,+∞)是连续的,D_(0+)~α是标准的Caputo微分.先将微分方程边值问题转化为积分方程,再转化为积分算子不动点问题,最后利用Leggett-Williams不动点定理得出Caputo分数阶微分方程边值问题至少有3个正解存在,其中格林函数的性质和非线性项的条件至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号