共查询到18条相似文献,搜索用时 93 毫秒
1.
发现复杂网络中的重叠社区是目前复杂网络分析的重要内容。选择社区代表性强的节点作为种子节点进行扩展是基于种子扩展策略重叠社区发现算法的关键,提出了一种基于度信息和邻域连通性的节点邻域中心性度量指标,并在此基础上提出了一种基于局部邻域连通性的重叠社区发现算法(Local Neighbor-hood Connectivitybased overlapping community detection Algorithm,LNCA)。首先计算每个节点的局部邻域连通熵和邻域中心性cc,选择中心性高的节点作为种子节点;然后采用带重启的随机游走策略扩展种子节点并得到初始社区;最后合并重叠度较大的社区得到最终社区发现结果。在6个带真实社区标签的网络和9个无真实社区标签的网络上,与SLP A、DEMON、CPM、NodePerception、EgoNetworks、EgonetSplitter等6个经典重叠社区发现算法进行比较,结果表明,在带标签网络上,LNCA算法在重叠NMI和F1分数上优于多数对比算法,可得到与网络真实社区更匹配的社区结... 相似文献
2.
针对基于种子扩展的重叠社区检测算法存在因种子选取质量不高而导致重叠社区检测结果准确度较低的问题,提出一种利用图嵌入、聚类和K-shell相结合的新的种子选取策略来进行种子扩展的重叠社区检测算法.算法利用提出的新的种子选取策略得到种子集,根据社区度量函数即电导性最优的原则不断进行种子扩展完成社区划分.研究结果表明,改进的... 相似文献
3.
基于全局划分和局部凝聚原理,改进得到一种两步式挖掘算法,该算法以寻找最优模块性Q值为基准,最终挖掘出重叠社区.对两个经典真实世界网络的Zacharys Karate俱乐部数据和海豚网络数据进行了实验测试,实验表明该算法能够有效地划分出重叠社区. 相似文献
4.
为了能够发现社会网络中的重叠社区以及解决重叠社区之间关系的模糊性和层次性,提出了一种基于模糊层次聚类的重叠社区检测算法(CDHC)。算法中引入了距离加权因子来计算社区间的相似度,通过模糊层次聚类来合并相似度高的社区;针对合并生成的原始社区计算社区中节点的隶属度,再将隶属度小于阈值的节点从社区中移除,从而形成最终的网络重叠社区结构。该算法不仅可以发现重叠的社区结构,还可以处理孤立节点。在Lancichinetti基准网络和真实网络上将CDHC算法与具有代表性的重叠社区发现算法CMP和LFM进行了比较,结果表明:影响社区检测精度的主要因素是社区间的混合程度,而网络规模和网络中社区的规模的影响并不显著;CDHC算法在小社区网络上的社区检测精度优于LFM,在大社区网络上的社区检测精度优于CMP。CDHC算法在保持社区检测质量的同时,还具有较好的稳定性,是一种有效的社会网络重叠社区检测算法。 相似文献
5.
重叠社区发现技术对于分析网络社区间关系具有重要意义,本文提出了基于Louvain重叠社区发现算法,该算法在Louvain算法的基础上使用模块度Q的增益度函数dq判断节点是否具有重叠性,并且发现重叠社区;设计实验验证该算法,使用经典数据集American College Football对该算法与常用重叠社区发现算法CPM、LFM和COPRA进行实验对比,结果表明:增益度函数dq能判断重叠节点,且通过找到社会网络中的重叠节点发现重叠社区;该算法在重叠模块度EQ上比CPM、LFM和COPRA算法分别提高17.05%、12.81%和9.45%,在运算时间上比CPM算法、COPRA算法分别增加了12.62%、7.15%,比LFM算法减少了23.06%,表明在综合重叠模块度EQ与算法时间上,本文基于Louvain重叠社区发现算法都优于其他的算法。 相似文献
6.
为提高单机处理复杂网络规模的能力,提出一种新的重叠社区发现算法.首先,通过基于图压缩的社区结构表示模型(压缩社区图),对网络进行无损压缩;然后,在压缩社区图上基于种子迭代的思想,通过不断优化社区适应度函数将种子扩展成社区;最后,将相似度高的社区进行合并,得到最终的重叠社区结果.由于压缩后的凝聚图大大降低了待处理的网络规模,并能在一定程度上减少重复计算,该方法可以大大提高计算效率和单机处理的网络规模. 相似文献
7.
在众多社区挖掘算法中,标签传播算法因为接近线性时间复杂度被广泛应用,但其也存在大量随机性,稳定性差的问题,采取一种新型的多标签策略解决重叠社区挖掘问题,并根据节点度减少初始标签赋予量的方法提升了算法的稳定性. 相似文献
8.
针对传统社区识别算法中需要根据先验知识设定参数、 社区划分结果具有随机性及复杂度过高的问题, 提出一种基于拓扑势的局部化重叠社区识别算法. 该算法通过引入拓扑势计算节点的影响力, 利用节点间的局部相似性度量指标, 采用标签传播策略进行重叠结构的社区识别. 在真实网络及人工合成网络上与多种经典算法进行对比实验验证了算法的高效性. 相似文献
9.
10.
重叠社区发现是复杂网络研究的重要课题.提出一种基于标签传播的重叠社区发现算法.首先利用标签传播算法得到初始无重叠社区划分结果,之后通过设计新的重叠节点识别算法确定重叠节点,最后再根据重叠节点的识别结果对社区进行合并从而得到最终的重叠社区划分结果.该算法克服了已有算法重叠节点占比过大的弊端.为验证算法的有效性,在LFR人工数据集、3个标准公开测试集以及真实的大豆基因共表达网络上进行实验,并与已有算法进行对比.实验结果表明,该算法性能明显优于对比算法,极大地改善了重叠节点比重过大问题. 相似文献
11.
针对复杂网络重叠社团检测的问题,建立了衡量重叠社团划分优劣的评判函数,并基于该函数提出了一种采用混沌量子粒子群优化的复杂网络重叠社团检测算法。该算法采用量子编码,利用Logistic映射初始化粒子种群,并以粒子群速度改变方式更新转角的大小,以概率为1收敛。实验结果表明,所提算法具有较高的检测正确率,能更好地反映实际社团划分情况。 相似文献
12.
社交媒体话题检测一直是个热点问题,由于社交数据杂乱异构,且具有时效性,语义模糊性等特点,话题检测也是个难点问题.研究利用复杂网络对社交文本数据进行建模,并结合一种基于极大团凝聚层次聚类的重叠社团发现方法实现了社交话题的检测.文本数据建模中,通过自定义突发系数量化话题词,即把话题词看作具有时域分布偏好的关键词,并通过自定义相关系数连接话题词,构建话题网络.为使自定义系数更适用于动态数据环境,实验结合真实数据进行了适应性测试优化系数.文章把采用EAGLE重叠社团发现方法在公开数据集上评测,根据Q函数值显示结果明显优于当前一些重叠社团发现策略,研究对采样的60万条青少年社交数据进行了话题分析并可视化了分析结果. 相似文献
13.
Recently, complex networks have attracted considerable research attention. Community detection is an important problem in the field of complex networks and is useful in a variety of applications such as information propagation, link prediction, recommendation, and marketing. In this study, we focus on discovering overlapping community structures by using link partitions. We propose a Latent Dirichlet Allocation (LDA)-Based Link Partition (LBLP) method, which can find communities with an adjustable range of overlapping. This method employs the LDA model to detect link partitions, which can calculate the community belonging factor for each link. On the basis of this factor, link partitions with bridge links can be found efficiently. We validate the effectiveness of the proposed solution by using both real-world and synthesized networks. The experimental results demonstrate that the approach can find a meaningful and relevant link community structure. 相似文献
14.
传统的社团发现算法大多存在划分效果和复杂度相矛盾的问题,为了解决该问题,提出一种新的单社团结构评价标准——社团密合度(group density).在此基础上,设计了一种基于凝聚思想的社团发现算法,该算法通过不断融合小社团,使网络的社团结构向平均社团密合度最大的方向发展,并使用模块度检测算法的划分结果.通过与经典的GN,Fast Newman,LPA等算法对多个数据集进行实验对比,验证了本文算法在获得较好的划分效果的同时具有较低的时间复杂度. 相似文献
15.
《清华大学学报》2015,(6)
Community structure is one of the most important features in real networks and reveals the internal organization of the vertices. Uncovering accurate community structure is effective for understanding and exploiting networks. Tolerance Granulation based Community Detection Algorithm(TGCDA) is proposed in this paper, which uses tolerance relation(namely tolerance granulation) to granulate a network hierarchically. Firstly, TGCDA relies on the tolerance relation among vertices to form an initial granule set. Then granules in this set which satisfied granulation coefficient are hierarchically merged by tolerance granulation operation. The process is finished till the granule set includes one granule. Finally, select a granule set with maximum granulation criterion to handle overlapping vertices among some granules. The overlapping vertices are merged into corresponding granules based on their degrees of affiliation to realize the community partition of complex networks. The final granules are regarded as communities so that the granulation for a network is actually the community partition of the network.Experiments on several datasets show our algorithm is effective and it can identify the community structure more accurately. On real world networks, TGCDA achieves Normalized Mutual Information(NMI) accuracy 17.55% higher than NFA averagely and on synthetic random networks, the NMI accuracy is also improved. For some networks which have a clear community structure, TGCDA is more effective and can detect more accurate community structure than other algorithms. 相似文献
16.
针对传统社区传播算法存在局部震荡、划分结果不稳定、划分结果分辨率高等弱点,提出了非随机的标签传播社区划分算法,通过去除传统算法的随机性进而克服其弱点.该算法主要进行了3个方面的改进:按特定顺序更新节点的标签;计算标签数量时,不仅统计邻居节点,而且统计待更新节点本身;通过贡献函数避免多个最大值时的随机选择.实验证明,该算法不仅保证了算法的划分正确性,而且大幅度减少了计算过程中的随机选择动作. 相似文献
17.
传统的基于用户的协同过滤(User-based CF)推荐算法的推荐效率随着数据的不断增加而降低.本文在User-based CF算法中引入二分网络社团发现理论,提出一种基于二分网络社团划分的推荐算法(RACD).首先通过用户与项目之间的关系建立用户-项目二分网络,然后通过RACD对该网络进行社团划分,得到用户的社团信息,最后通过同一社团中的其他用户对目标用户进行项目的推荐.在经典网络数据集上的实验结果表明,RACD能够有效提高推荐系统实时推荐效率. 相似文献