首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
植物由于不能移动而发展了复杂而精密的抗病系统.近年来,人们发现作为细胞膜组分的脂肪酸在植物的各种抗病机制中发挥着举足轻重的作用.脂肪酸及其衍生物不仅参与植物基础免疫和系统免疫,还参与经典抗病基因(R基因)介导的抗病过程.目前,已发现许多与脂肪酸(尤其是16碳和18碳脂肪酸及其衍生物)代谢相关的突变体,对这些突变体抗病性改变的分子机制研究成为植物抗病领域研究热点之一.本文综述了脂肪酸及其衍生物在植物防御信号转导中的最新研究进展,旨在为植物抗病遗传育种研究提供新的参考.  相似文献   

2.
转基因植物检测技术研究进展   总被引:3,自引:0,他引:3  
随着植物基因工程技术的发展,转基因植物的研究和开发取得了令人瞩目的成绩,已培育了一批抗虫、抗病、抗除草剂和高产优质的转基因农作物新品种。与此同时,转基因植物检测技术不断丰富和完善,促进了转基因植物科学鉴定和评价,以及转基因植物商业化种植。目前报道的转基因植物检测方法主要有3类,一是在整合水平上进行的检测,包括PCR检测、Southern blot检测和染色体原位杂交检测等;二是在转录水平上进行的检测,包括RT-PCR检测、Northern blot杂交检测等;三是在表达水平上进行的检测,包括组织化学染色检测、荧光蛋白检测、Western blot检测、ELISA检测、叶片退绿检测和叶片涂抹除草剂检测等。  相似文献   

3.
Xing W  Zou Y  Liu Q  Liu J  Luo X  Huang Q  Chen S  Zhu L  Bi R  Hao Q  Wu JW  Zhou JM  Chai J 《Nature》2007,449(7159):243-247
Pathogenic microbes use effectors to enhance susceptibility in host plants. However, plants have evolved a sophisticated immune system to detect these effectors using cognate disease resistance proteins, a recognition that is highly specific, often elicits rapid and localized cell death, known as a hypersensitive response, and thus potentially limits pathogen growth. Despite numerous genetic and biochemical studies on the interactions between pathogen effector proteins and plant resistance proteins, the structural bases for such interactions remain elusive. The direct interaction between the tomato protein kinase Pto and the Pseudomonas syringae effector protein AvrPto is known to trigger disease resistance and programmed cell death through the nucleotide-binding site/leucine-rich repeat (NBS-LRR) class of disease resistance protein Prf. Here we present the crystal structure of an AvrPto-Pto complex. Contrary to the widely held hypothesis that AvrPto activates Pto kinase activity, our structural and biochemical analyses demonstrated that AvrPto is an inhibitor of Pto kinase in vitro. The AvrPto-Pto interaction is mediated by the phosphorylation-stabilized P+1 loop and a second loop in Pto, both of which negatively regulate the Prf-mediated defences in the absence of AvrPto in tomato plants. Together, our results show that AvrPto derepresses host defences by interacting with the two defence-inhibition loops of Pto.  相似文献   

4.
近年来 ,随着植物抗病基因的分离 ,植物抗病机制的分子生物学和植物抗病基因工程的研究轰轰烈烈地展开并取得重大突破。利用抗病基因进行遗传转化已相继取得成功 ,基于抗病反应内在机制的基因工程也开始启动 ,并将越来越广泛地应用于作物抗病品种选育和农业生产实践。  相似文献   

5.
B Kearney  B J Staskawicz 《Nature》1990,346(6282):385-386
Disease-resistance genes introduced into cultivated plants are often rendered ineffective by the ability of pathogen populations to overcome host resistance. The bacterial pathogen Xanthomonas campestris pathovar vesicatoria causes bacterial spot disease of tomato and pepper, and this pathogen has been shown to overcome disease resistance in pepper (Capsicum annuum) by evading the recognition and defence response of the host plant. Numerous resistance genes to bacterial spot have been identified in pepper and its wild relatives, each providing resistance to specific races of X.c. vesicatoria. The resistance gene Bs1, for example, provides resistance to X.c. vesicatoria strains expressing the avirulence gene avrBs1; Bs2 provides resistance to stains expressing avrBs2 and so on. We now report that avr Bs2 is highly conserved among strains of X.c. vesicatoria, and among many other pathovars of X. campestris. Furthermore, we find that avrBs2 is in fact needed for full virulence of the pathogen on susceptible hosts. This implies that plants carrying Bs2 can recognize an essential gene of the bacterial pathogen, which may explain why Bs2 confers the only effective field resistance to X.c. vesicatoria in pepper.  相似文献   

6.
Bacterial disease resistance in Arabidopsis through flagellin perception   总被引:2,自引:0,他引:2  
Zipfel C  Robatzek S  Navarro L  Oakeley EJ  Jones JD  Felix G  Boller T 《Nature》2004,428(6984):764-767
Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance.  相似文献   

7.
利用转基因植物生产抗体是一个新兴的生物技术领域。这种技术将编码全抗体或抗体片段的基因导入植物,从而在植物中产生全抗体或抗体片段,获得的抗体能功能性地识别抗原并结合抗原。目前已有农杆菌介导转移法和基因枪法等多种转化技术用于将抗体基因导入植物细胞。利用植物表达抗体的一大优势是能大规模廉价生产免疫治疗用抗体。此外,植物抗体也可用于植物自身抗病,并能调节植物细胞代谢。本文主要就植物生产抗体的方法、抗体的表达及应用作一综述。  相似文献   

8.
To engineer crop disease resistance by utilizing natural defense mechanism that was expressed in the incompatible host-pathogen interactions is expected to result in a durable and broad-spectrum resistance. In order to prove this viewpoint, we amplified the coding region of the glucose oxidase (GO) gene from Aspergillus niger via PCR and fused it to the pathogen-inducible promoter, Prp1-1. The chimeric gene was cloned into a plant expression vector and conjugated into Agrobacterium. Twenty-three transgenic potato plants were obtained by Agrobacterium-mediated transformation. The integration of GO gene was confirmed by Southern hybridization and the GO gene expression was identified with KI-starch color reaction. Phytophthora infestans inoculation revealed that the expression of the chimeric transgene was induced by pathogen infection. Most of the transgenic plants exhibited various degrees of enhanced disease resistance. Four of them had lesion sizes reduced to less than half of the non-transgenic controls. One plant showed disease resistance of the hypersensitive response. These results testified the feasibility of our strategy of expressing GO transgene under the control of the disease-inducible promoter in engineering crop disease resistance.  相似文献   

9.
Three genes encoding for fungal cell wall degrading enzymes (CWDEs), ech42, nag70 and gluc78 from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305.2 singly and in all possible combinations and transformed to rice plants. More than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had lesser effect. The expression level of endochitinase but exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the effect of endochitinase on disease resistance when the two genes co-expressed in transgenics. Resistance to Magnaporthe grisea was found in all kinds of regenerated plants including that with single gluc78. A few lines expressing either ech42 or nag70 gene were immune to the disease. Transgenic plants are being tested to further evaluate disease resistance at field level. This is the first report of multiple of expression of genes encoding CWDEs from Trichoderma atroviride that result in resistance to blast and sheath blight in rice.  相似文献   

10.
The strategy of the two-component system,composed of Barnase and Barstar which encode RNase and a specific inhibitor to the RNase respectively, is adopted to obtain transgenic rice resistant to rice fungal blast disease. In this study, two chimeric promoters, induced by rice blast fungus pathogen (Magnaporthe grisea), are fused with Barnase respectively to construct two plant expression vectors, pWBNBS and pPBNBS together with the Barstar driven by CaMV 35S promoter. The resistance of the transgenic rice lines to rice blast fungus disease and rice blight disease are evaluated. The results show that (1) the expression of Barnase is induced in rice leaves when inoculated with the spores of Magnaporthe grisea; (2) the induced expression level of Barnase surpasses the level of Barstar, which elicits a similar hypersensitive response (HR) in the leaves, and the transgenic plant shows high resistance to the rice fungal blast disease; and (3) transgenic rice plants also show obvious resistance to rice bacterial blight disease. Taken together, these results suggest that the transgenic rice plants harboring this two-component system acquire relatively broad spectrum resistance against pathogens, especially high resistance to rice fungal pathogen.  相似文献   

11.
Plant pathogens and integrated defence responses to infection.   总被引:99,自引:0,他引:99  
J L Dangl  J D Jones 《Nature》2001,411(6839):826-833
Plants cannot move to escape environmental challenges. Biotic stresses result from a battery of potential pathogens: fungi, bacteria, nematodes and insects intercept the photosynthate produced by plants, and viruses use replication machinery at the host's expense. Plants, in turn, have evolved sophisticated mechanisms to perceive such attacks, and to translate that perception into an adaptive response. Here, we review the current knowledge of recognition-dependent disease resistance in plants. We include a few crucial concepts to compare and contrast plant innate immunity with that more commonly associated with animals. There are appreciable differences, but also surprising parallels.  相似文献   

12.
Neotyphodium属内生真菌与禾本科植物之间的共生关系因其与农牧业的密切关系而受到研究者们的广泛关注。Neotyphodium属内生真菌长期生活在植物体内的特殊环境中,并与宿主协同进化,在演化过程中二者形成互惠共生关系,一方面内生真菌可从宿主中吸收营养供自己生长需要,另一方面内生真菌可增强宿主植物的抗旱性、抗病性和抗虫性,促进宿主植物生长并提高其竞争能力,但也对家畜产生毒性。  相似文献   

13.
2—3 anti-fungal disease genes are coinserted with hygromycin phosphotransferase in the same vector. Two insecticidal genes and PPT acetyl transferase genes are placed in another one. The vectors are co-delivered to rice embryonic cellus tissue at a molar ratio of 1︰1 using the particle gun method. 55 independent regenerated lines have been obtained through screening for hygromycin resistance. Of these, 70% transgenic plants harbor 6—7 foreign genes. The genes on the same vectors are always co-delivered to rice plant. Northern blot analysis has indicated that the multiple foreign genes give stable expression. In the 6 transgenic plants carrying 6—7 foreign genes, multiple foreign genes tend to integrate in 1 or 2 genetic loci. Progeny segregation is consistent with Mendel’s 3︰1 segregation law. 8 homozygous R1 transgenic plants harboring 2—3 anti-fungal and 2 insecticidal genes are selected from large number of transgenic progeny screening for hygromycin and Basta resistance.  相似文献   

14.
黄土高原几种灌木植物的水分利用效率与抗逆性   总被引:2,自引:0,他引:2  
论述了黄土高原几种灌木植物的水分利用效率及抗逆性,从中看到,不同植物有不同抵抗外界不良环境的途径,用一种或两种指标来确定植物的抗性是不科学的  相似文献   

15.
稻瘟病菌(Magnaporthe Grisea)引起的水稻稻瘟病是世界水稻生产最具毁灭性的病害之一,也是研究植物与病原物相互作用分子机理的模式系统之一.真菌分泌蛋白由于其本身所具有的分泌特性极有可能成为被宿主植物识别的作用病菌分泌蛋白,该研究到目前为止还比较有限. 文章证明了稻瘟病菌分泌蛋白的存在并且检验了其中几个蛋白在其宿主植物水稻中的诱导因子作用. 通过同源基因的时空表达技术,表明分泌蛋白在稻瘟病菌中大量表达.其中两个在稻瘟病菌中的未知蛋白被测试出具有诱导因子作用.  相似文献   

16.
SNARE-protein-mediated disease resistance at the plant cell wall   总被引:2,自引:0,他引:2  
Failure of pathogenic fungi to breach the plant cell wall constitutes a major component of immunity of non-host plant species--species outside the pathogen host range--and accounts for a proportion of aborted infection attempts on 'susceptible' host plants (basal resistance). Neither form of penetration resistance is understood at the molecular level. We developed a screen for penetration (pen) mutants of Arabidopsis, which are disabled in non-host penetration resistance against barley powdery mildew, Blumeria graminis f. sp. hordei, and we isolated the PEN1 gene. We also isolated barley ROR2 (ref. 2), which is required for basal penetration resistance against B. g. hordei. The genes encode functionally homologous syntaxins, demonstrating a mechanistic link between non-host resistance and basal penetration resistance in monocotyledons and dicotyledons. We show that resistance in barley requires a SNAP-25 (synaptosome-associated protein, molecular mass 25 kDa) homologue capable of forming a binary SNAP receptor (SNARE) complex with ROR2. Genetic control of vesicle behaviour at penetration sites, and plasma membrane location of PEN1/ROR2, is consistent with a proposed involvement of SNARE-complex-mediated exocytosis and/or homotypic vesicle fusion events in resistance. Functions associated with SNARE-dependent penetration resistance are dispensable for immunity mediated by race-specific resistance (R) genes, highlighting fundamental differences between these two resistance forms.  相似文献   

17.
<正>数年来在竹杆锈病的野外调查和人工接种试验中没有发现竹杆锈  相似文献   

18.
茉莉酸和水杨酸是植物防御反应中的重要分子,为研究茉莉酸和水杨酸在水稻防御反应中的作用,采用了色谱法测定了此两种激素在外源植物生长调节剂胁迫下的水平变化。我们采用的此方法简单,灵敏度高,再现性好,此两种激素含量变化可得到准确分离与测定。我们的结果表明在水稻中茉莉酸和水杨酸的作用可能不同与其它植物。首先,水杨酸含量变化较缓慢,其次,茉莉酸含量变化较明显。此结果表明水稻中茉莉酸和水杨酸的作用可能不同与烟草和拟南介,在信号传递过程中可能起到正面的调节作用。  相似文献   

19.
病毒的多种基因产物可引起植物的病源诱导抗性,如外壳蛋白、复制酶、运动蛋白缺陷的干涉RNA和DNA以及非翻译RNA等。对植物病源诱导抗性的研究有助于阐明病毒的致病机理并对植物抗病的应用具有重要的理论和应用价值。  相似文献   

20.
Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor of the resistance gene(s). Twenty-nine progenies of somatically hybridized plants were obtained. Seven somatically hybridized plants and their parents were used for AFLP (amplified fragment length polymorphism) analysis using 8 primer pairs. Results confirmed that these plants were somatic hybrids containing the characteristic bands of both parents. The morphology of the regenerated rice showed characters of both O.sativa and O.meyeriana. Two somatic hybrids showed highest BB resistance and the other 8 plants showed moderate resistance. The new germplasms with highest resistance have been used in the rice breeding program for the improvement of bacterial blight resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号