首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
This paper proposes value‐at risk (VaR) estimation methods that are a synthesis of conditional autoregressive value at risk (CAViaR) time series models and implied volatility. The appeal of this proposal is that it merges information from the historical time series and the different information supplied by the market's expectation of risk. Forecast‐combining methods, with weights estimated using quantile regression, are considered. We also investigate plugging implied volatility into the CAViaR models—a procedure that has not been considered in the VaR area so far. Results for daily index returns indicate that the newly proposed methods are comparable or superior to individual methods, such as the standard CAViaR models and quantiles constructed from implied volatility and the empirical distribution of standardised residuals. We find that the implied volatility has more explanatory power as the focus moves further out into the left tail of the conditional distribution of S&P 500 daily returns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Value‐at‐Risk (VaR) is widely used as a tool for measuring the market risk of asset portfolios. However, alternative VaR implementations are known to yield fairly different VaR forecasts. Hence, every use of VaR requires choosing among alternative forecasting models. This paper undertakes two case studies in model selection, for the S&P 500 index and India's NSE‐50 index, at the 95% and 99% levels. We employ a two‐stage model selection procedure. In the first stage we test a class of models for statistical accuracy. If multiple models survive rejection with the tests, we perform a second stage filtering of the surviving models using subjective loss functions. This two‐stage model selection procedure does prove to be useful in choosing a VaR model, while only incompletely addressing the problem. These case studies give us some evidence about the strengths and limitations of present knowledge on estimation and testing for VaR. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This paper adopts the backtesting criteria of the Basle Committee to compare the performance of a number of simple Value‐at‐Risk (VaR) models. These criteria provide a new standard on forecasting accuracy. Currently central banks in major money centres, under the auspices of the Basle Committee of the Bank of International settlement, adopt the VaR system to evaluate the market risk of their supervised banks. Banks are required to report VaRs to bank regulators with their internal models. These models must comply with Basle's backtesting criteria. If a bank fails the VaR backtesting, higher capital requirements will be imposed. VaR is a function of volatility forecasts. Past studies mostly conclude that ARCH and GARCH models provide better volatility forecasts. However, this paper finds that ARCH‐ and GARCH‐based VaR models consistently fail to meet Basle's backtesting criteria. These findings suggest that the use of ARCH‐ and GARCH‐based models to forecast their VaRs is not a reliable way to manage a bank's market risk. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
We propose a method approach. We use six international stock price indices and three hypothetical portfolios formed by these indices. The sample was observed daily from 1 January 1996 to 31 December 2006. Confirmed by the failure rates and backtesting developed by Kupiec (Technique for verifying the accuracy of risk measurement models. Journal of Derivatives 1995; 3 : 73–84) and Christoffersen (Evaluating interval forecasts. International Economic Review 1998; 39 : 841–862), the empirical results show that our method can considerably improve the estimation accuracy of value‐at‐risk. Thus the study establishes an effective alternative model for risk prediction and hence also provides a reliable tool for the management of portfolios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Value‐at‐risk (VaR) is a standard measure of market risk in financial markets. This paper proposes a novel, adaptive and efficient method to forecast both volatility and VaR. Extending existing exponential smoothing as well as GARCH formulations, the method is motivated from an asymmetric Laplace distribution, where skewness and heavy tails in return distributions, and their potentially time‐varying nature, are taken into account. The proposed volatility equation also involves novel time‐varying dynamics. Back‐testing results illustrate that the proposed method offers a viable, and more accurate, though conservative, improvement in forecasting VaR compared to a range of popular alternatives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper compares the information content of realized measures constructed from high‐frequency data and implied volatilities from options in the context of forecasting volatility. The comparison is based on within‐sample and out‐of‐sample (over horizons of 1–22 days) forecasts of daily S&P 500 index return volatility. The paper adds to the findings of previous studies, by considering recent developments in the related practice and the literature. It is shown that, for within‐sample fitting, the realized measure is more informative than the implied volatility. In contrast, the implied volatility is more informative than the realized measure for out‐of‐sample forecasting, in particular for multi‐step‐ahead forecasting. Moreover, we show that it is helpful to use all the information provided by the realized measure and the implied volatility for the within‐sample fitting. For multi‐step‐ahead forecasting, however, it is better to use only the implied volatility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we investigate the performance of a class of M‐estimators for both symmetric and asymmetric conditional heteroscedastic models in the prediction of value‐at‐risk. The class of estimators includes the least absolute deviation (LAD), Huber's, Cauchy and B‐estimator, as well as the well‐known quasi maximum likelihood estimator (QMLE). We use a wide range of summary statistics to compare both the in‐sample and out‐of‐sample VaR estimates of three well‐known stock indices. Our empirical study suggests that in general Cauchy, Huber and B‐estimator have better performance in predicting one‐step‐ahead VaR than the commonly used QMLE. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Accurate modelling of volatility (or risk) is important in finance, particularly as it relates to the modelling and forecasting of value‐at‐risk (VaR) thresholds. As financial applications typically deal with a portfolio of assets and risk, there are several multivariate GARCH models which specify the risk of one asset as depending on its own past as well as the past behaviour of other assets. Multivariate effects, whereby the risk of a given asset depends on the previous risk of any other asset, are termed spillover effects. In this paper we analyse the importance of considering spillover effects when forecasting financial volatility. The forecasting performance of the VARMA‐GARCH model of Ling and McAleer (2003), which includes spillover effects from all assets, the CCC model of Bollerslev (1990), which includes no spillovers, and a new Portfolio Spillover GARCH (PS‐GARCH) model, which accommodates aggregate spillovers parsimoniously and hence avoids the so‐called curse of dimensionality, are compared using a VaR example for a portfolio containing four international stock market indices. The empirical results suggest that spillover effects are statistically significant. However, the VaR threshold forecasts are generally found to be insensitive to the inclusion of spillover effects in any of the multivariate models considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This intention of this paper is to empirically forecast the daily betas of a few European banks by means of four generalized autoregressive conditional heteroscedasticity (GARCH) models and the Kalman filter method during the pre‐global financial crisis period and the crisis period. The four GARCH models employed are BEKK GARCH, DCC GARCH, DCC‐MIDAS GARCH and Gaussian‐copula GARCH. The data consist of daily stock prices from 2001 to 2013 from two large banks each from Austria, Belgium, Greece, Holland, Ireland, Italy, Portugal and Spain. We apply the rolling forecasting method and the model confidence sets (MCS) to compare the daily forecasting ability of the five models during one month of the pre‐crisis (January 2007) and the crisis (January 2013) periods. Based on the MCS results, the BEKK proves the best model in the January 2007 period, and the Kalman filter overly outperforms the other models during the January 2013 period. Results have implications regarding the choice of model during different periods by practitioners and academics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号