首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用陆地棉遗传背景的海岛棉染色体16置换系材料Sub16和陆地棉多基因标记系T586创建了含1259个单株的F2作图群体, 结合本实验室最新的栽培四倍体棉种种间分子遗传图谱上染色体16的标记信息, 利用分子标记技术, 对红株基因R1进行精细定位. 在F2分离群体中, 红株性状分离比符合孟德尔1:2:1的分离, 进一步证明该性状是由一不完全显性单基因控制. 利用JoinMap 3.0连锁分析软件, 使用含237个单株的F2小群体完成红株基因R1的初级定位, 进一步利用含1259个单株的F2大群体将该基因精细定位在NAU4956和NAU6752之间, 与最近标记的遗传距离为0.49 cM. 研究结果为进一步克隆该基因及培育红色彩棉转基因品种提供了研究基础.  相似文献   

2.
玉米抗纹枯病QTL分子标记定位   总被引:7,自引:0,他引:7  
用抗玉米纹枯病自交系CML270和感病自交系478的(CML270×478)×CML270 BC1∶2群体共322个株系为作图和定位群体, 构建了125个SSR标记位点的遗传连锁图谱, 覆盖玉米基因组1939.0 cM, 平均图距15.5 cM. 采用复合区间定位分析, 检测到玉米纹枯病抗病指数主效QTL位点3个, 2个位于第1染色体, 1个位于第7染色体上, 它们分别能解释表型变异的18%~20%; 控制株高的QTL位点7个, 分别位于第3~6染色体上, 控制“穗位高”的QTL位点5个, 分别位于第3, 4, 6染色体上. 自交系CML270玉米纹枯病抗性主效QTL真实存在, 抗性与植株高度遗传上不存在连锁关系, 为玉米纹枯病分子标记辅助选择(MAS)和抗性基因分离与克隆提供了技术和材料支撑.  相似文献   

3.
利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势   总被引:9,自引:0,他引:9  
利用以粳稻品种Asominori为背景, 籼稻品种IR24为供体的染色体片段置换系群体的63个株系, 构建了一套以广亲和粳稻品种02428为父本的杂种群体, 研究了IR24全基因组的染色体片段与02428基因组相应染色体片段间的产量及产量构成性状的杂种优势效应. 结果表明, 产量和产量构成性状的亚种间杂种优势水平在染色体片段上存在显著的差异, 图示基因型分析发现, 有14个独立的染色体区段在产量上存在显著的亚种间杂种优势, 分布在除Chr.8和 Chr.10外的其余10条染色体上, 其中在Chr.2, Chr.3, Chr.4, Chr.11和 Chr.12上的6个染色体区段的杂种优势显著水平达0.005以上, 分别位于X132~G1340~R459, X48~C393A, R288~R1854, R2918~X52, X257~C1350和R367~X189-2~X24-2的标记区间, 单片段置换后, 其CSSLs×02428组合F1单株产量比对照组合“Asominori×02428”增加35%以上. 大多数染色体片段在产量及主要产量构成性状上没有显著的杂合效应. 在Chr.6上发现一个杂种劣势片段, 与标记R2171连锁, 使杂种产量下降27%. 本文还探讨了应用染色体片段置换系研究作物杂种优势的优点, 并提出了利用水稻籼粳亚种间部分杂种优势和全基因组杂种优势的分子育种途径.  相似文献   

4.
玉米RFLP遗传图谱的构建及矮生基因定位   总被引:22,自引:1,他引:21  
以 792 2× 5 0 0 3的杂交F2 作为构图群体 ,构建了具 85个RFLP标记的玉米遗传图 ,覆盖玉米基因组的 1 82 7.8cM ,标记间平均间距为 2 4.4cM .田间采用 1 0× 1 1简单矩形格子设计考察了 1 0 6个F2∶3 家系的株高 ,利用区间作图法分析了影响株高的数量性状基因座位 (QTL) ,可将自交系 5 0 0 3的致矮作用剖分为 5个QTL ,其中 2个为主效QTL ,1个是具增效作用的ph1 ,位于第 2染色体上 ,可解释表型变异的 5 1 .8% ;另 1个是具致矮作用的ph3,位于第 5染色体上 ,与矮生突变基因bv1的图位相同或相近 ,可解释表型变异的 38.6 % .  相似文献   

5.
以成熟期Ⅴ组的Essex为母本, Ⅱ组的ZDD2315为父本和轮回亲本, 创建114个单株的BC1F1群体; 采用250个SSR标记, 通过MAPMAKER3.0构建遗传图谱, 覆盖大豆基因组2963.5 cM. 采用WinQTLCart 2.5, IciMapping 2.0, MapQTL 5.0以及QTLnetwork 2.0共4种软件的6种遗传统计模型对BC1F3家系的开花期表型数据, 共检测到9个控制开花期的QTL. 6个能被至少两种模型检测到; 3个只被一种模型检测到, 其中Flwdt7定位在C2连锁群的Satt643和Sat_213之间, 置信距33.8 cM, 贡献率11.0%. 为验证此结果, 从BC1F5家系中选择该区间附近标记杂合单株, 经自交建立5个剩余杂合系(RHL), 分别在7个位点上有分离. 在检测遗传背景相对一致后将分离位点相同的合并, 采用JoinMap®3.0构建该区段子图谱. 用QTLnetwork 2.0 NWIM将Flwdt7定位在邻区间Satt277~Satt489, 离两侧标记的距离分别为1.40和0.45 cM, 置信距缩短为2.7 cM, 贡献率上升为36.8%. 再用RHL标记等位变异分组差异显著性分析和目标区间近等基因系分析等方法验证了该结果. 多种模型全基因组QTL初扫描基础上的目标区段剩余杂合系定位是一种有效的精细定位策略.  相似文献   

6.
以成熟期Ⅴ组的Essex为母本,Ⅱ组的ZDD2315为父本和轮回亲本,创建114个单株的BC1F1群体;采用250个SSR标记,通过MAPMAKER3.0构建遗传图谱,覆盖大豆基因组2963.5 cM.采用WinQTLCart 2.5,IciMapping 2.0,MapQTL 5.0以及QTLnetwork 2.0 共4种软件的6种遗传统计模型对BC1F3家系的开花期表型数据,共检测到9个控制开花期的QTL.6个能被至少两种模型检测到;3个只被一种模型检测到,其中Flwdt7定位在C2 连锁群的Satt643和Sat_213之间,置信距33.8 cM,贡献率11.0%.为验证此结果,从BC1F5 家系中选择该区间附近标记杂合单株,经自交建立5个剩余杂合系(RHL),分别在7个位点上有分离.在检测遗传背景相对一致后将分离位点相同的合并,采用JoinMap  3.0构建该区段子图谱.用QTLnetwork 2.0 NWIM将Flwdt7定位在邻区间Satt277~Satt489,离两侧标记的距离分别为1.40和0.45 cM,置信距缩短为2.7 cM,贡献率上升为36.8%.再用RHL 标记等位变异分组差异显著性分析和目标区间近等基因系分析等方法验证了该结果.多种模型全基因组QTL初扫描基础上的目标区段剩余杂合系定位是一种有效的精细定位策略.  相似文献   

7.
於金生 《科学通报》2007,52(5):540-547
前人研究将水稻光敏核不育位点Pms1定位在第七染色体上. 本研究对来源于定位亲本(明恢63和农垦58)的两个BAC克隆进行比较测序来鉴定Pms1的候选基因, 通过对两个克隆的注释和比较分析我们得到五个候选基因以进行进一步的功能检验. 我们还将这两个亲本的基因组序列与公共数据库里的日本晴和93-11的进行了比较分析. 分析表明, 该区段四个亲本在序列组成上存在巨大差异, 这种差异主要归咎于活性反转座成分造成的基因组新近增长和变异; 亚种内和亚种间以Indel或者SNP的形式存在高度的多态性. 利用反转座成分的两个长末端重复进行分析发现它们的替换速率比已有文献报道要高得多. 该结果证明在自然和人工选择的共同作用下, Pms1区段正处于快速的基因组进化过程中.  相似文献   

8.
对玉米导入系群体7个农艺性状进行QTL定位,从分子水平研究不同环境条件下控制玉米产量性状的遗传基础,为玉米育种工作提供了理论基础.选用玉米自交系PHB1M为轮回亲本,性状互补的四-287自交系为供体亲本,通过杂交、四代回交及二代自交,并结合分子标记辅助选择方法构建了208个导入系为作图群体;利用70对SSR引物和64对SRAP引物进行多态性扩增,获得了793个多态性位点;采用JoinMap4.0软件进行连锁图谱构建,得到了长度为1917.2 cM、涵盖10个连锁群的连锁图谱,分别在和林县与呼和浩特市两个环境下进行株高、穗位高、叶片数、穗长、穗粗、穗行数及百粒重7个农艺性状的表型鉴定;利用Map QTL4.0软件中MQM作图法对试验群体的7个农艺性状进行QTL定位,两地共检测到100个QTL位点, 23个株高、16个穗位高、22个叶片数、10个穗长、16个穗粗、4个穗行数和9个百粒重QTL.其中,控制5个性状的8个QTL在两个环境中同时被检测到,特别是株高和穗位高的3个QTL表达稳定性较高,为基因克隆以及标记辅助育种提供理论支撑.  相似文献   

9.
一个水稻窄叶突变体的鉴定和基因定位   总被引:5,自引:1,他引:5  
从粳稻品种“中花11”转基因后代中发现了一个窄叶突变体. 突变体表现为植株矮化、生育期延迟、叶片变窄及内卷和结实率降低等一系列突变表型. 窄叶突变体的剑叶在饱和光下净光合速率显著低于野生型, 在灌浆期剑叶的气孔导度和蒸腾速率也明显低于野生型. 遗传学分析表明, 该窄叶突变体表型受一对隐性核基因控制. 通过对突变体T1代和T2后代的分子检测发现, 该突变体表型非T-DNA插入引起. 利用籼粳杂交F2群体对突变体位点进行了基因定位, 将其定位在第12染色体长臂上SSR标记RM7018和RM3331之间. 与经典的形态标记nal3(cul3)位于相同染色体区段, 故将该突变体暂定名为nal3(t). 随后, 利用已公布的水稻序列和SSR标记, 开发了6对新的STS标记, 进一步将窄叶基因nal3(t)定位在NS10和RH12-8之间, 遗传距离分别为0.58和0.26 cM, 物理距离约136 kb, 为进一步克隆nal3(t)打下了基础.  相似文献   

10.
落粒性是水稻非常重要的农艺性状,适度落粒有利于减少产量损失和水稻机械化收割,提高生产效率.因此鉴定落粒基因对水稻生产具有重要意义.本研究以日本晴为受体亲本、优良恢复系R225为供体亲本,采用高代回交和SSR标记辅助选择相结合的方法,鉴定了一个携带易落粒主效单基因的水稻染色体片段代换系Z481.Z481含有4个染色体代换片段,位于第1,3,6染色体上,其代换片段长度分别为8.30,6.17,3.12和10.79 Mb,平均为7.10 Mb.与受体日本晴相比,Z481的株高、穗长、倒一节间长、倒二叶宽显著降低,剑叶宽和结实率显著增加,其他重要农艺性状如叶长、有效穗数、每穗粒数和千粒重均无显著差异.扫描电子显微镜观察表明Z481的护颖和枝梗之间的离层在成熟时期已被完全降解,而日本晴的离层完整,在细胞学上解释了Z481易落粒性产生的原因.进一步利用日本晴与Z481杂交产生的F_1和F_2群体对易落粒基因进行了遗传分析和分子定位.该易落粒性状受单基因隐性调控,最终将该基因定位于第6染色体RM253和ZTQ53之间824 kb的区域,暂命名为SH6(t).目前,在第6染色体尚无落粒基因克隆的报道.由于染色体片段代换系除代换片段外与受体亲本的遗传背景一致,且Z481易落粒遗传行为简单,基本未携带育种不利性状.因此,本研究无论对SH6(t)的克隆,还是进行基因聚合育种培育适度落粒新品种均具有重大利用价值.  相似文献   

11.
外源基因定向插入甘蓝型油菜C基因组   总被引:5,自引:2,他引:3  
李俊  方小平  王转  李均  罗莉霞  胡琼 《科学通报》2006,51(12):1406-1412
外源基因定向插入C基因组对于降低转基因甘蓝型油菜(Brassica napus, AACC)的生态环境风险具有十分重要的作用. 本研究利用农杆菌介导的遗传转化方法将抗除草剂bar基因转入到芥蓝(B. oleracea var. alboglabra, CC)中, 以转bar基因的芥蓝(CbCb)为父本, 非转基因的白菜(B. rapa, AA)为母本, 通过种间杂交、子房培养和染色体加倍, 获得bar基因定向插入C基因组的人工合成甘蓝型油菜株系67个. PCR结果表明, 人工合成的甘蓝型油菜bar基因为阳性的株系31个, 阴性的株系36个. Basta®喷施结果表明, 分子检测阳性的人工合成甘蓝型油菜高抗除草剂, 分子检测阴性人工合成甘蓝型油菜则不抗. Southern blotting分析结果表明, 外源bar基因已整合到人工合成甘蓝型油菜的基因组中.  相似文献   

12.
中国对虾遗传连锁图谱的构建   总被引:1,自引:0,他引:1  
田燚  孔杰  王伟继 《科学通报》2008,53(5):544-555
中国对虾是中国重要的水产资源之一, 其自然群体主要分布于中国黄渤海沿海海域和朝鲜半岛海域. 中国对虾遗传连锁图谱的构建, 可以加速分子标记辅助育种和控制重要经济性状基因鉴定的研究, 为中国对虾遗传改良和优良品种的培育提供基础信息. 利用中国对虾F2群体家系和AFLP分子标记技术进行了中国对虾遗传连锁图谱的构建. 利用55对AFLP引物组合对F2家系的110个个体进行了研究, 检测到532个符合作图策略的AFLP标记. 对于符合3∶1比例的分离位点利用F2自交模型构建性别平均连锁图谱, 对于符合1∶1比例的分离位点利用拟测交理论分别构建中国对虾的雌性和雄性遗传连锁图谱. 雌性遗传图谱分别由103标记组成28个连锁群, 没有未连锁标记, 图谱长度分别为1090 cM. 雄性遗传图谱由144个标记构成35个连锁群, 有10个未连锁标记, 图谱长度分别为1617 cM. 中国对虾雄性遗传连锁图谱比雌性遗传连锁图谱长32.6%, 这可能说明中国对虾不同性别存在不同的重组率. 性别平均遗传图谱有44个连锁群, 由216个标记组成, 有2个未连锁标记, 图谱实际长度为1772.1 cM. 中国对虾遗传连锁图谱基因组估计长度为2420 cM, 符合与人类基因组相比的对虾类基因组长度. 通过皮尔逊相关系数检测认为AFLP标记在中国对虾图谱上分布均匀. 本研究利用AFLP标记构建的中国对虾遗传连锁图谱为中国对虾基因组研究和遗传改良提供一定的基础, 同时开发的微卫星标记也为遗传连锁图谱的整合提供条件.  相似文献   

13.
水稻半矮秆基因sd-g的精细定位   总被引:6,自引:3,他引:6  
矮秆基因的发掘、研究和利用是水稻株型改良育种和植物生长发育分子生物学研究的重要基础. 利用新桂矮双矮与02428杂交产生的F2群体对sd-g进行了精细定位. sd-g基因首先被定位在水稻第5染色体上微卫星标记RM440和RM163之间, 遗传距离分别是0. 5和2.5 cM. 为了进一步精细定位sd-g基因, 利用已经公布的水稻基因组序列, 在sd-g基因附近区域寻找微卫星序列并发展新的标记, 在RM440和RM163之间发展了9个微卫星标记. sd-g基因被进一步定位在SSR5-1和SSR5-51之间, SSR5-1与sd-g之间距0. 1 cM, SSR5-51与sd-g之间相距0. 3 cM, 而SSR418与sd-g表现为共分离. 以此为基础, 构建覆盖sd-g基因区域的BAC重叠群, sd-g基因被定位在AC105319约85 kb的区段上, 这为sd-g基因的图位克隆奠定了基础.  相似文献   

14.
刘洋  姜淳 《科学通报》2009,54(10):1401-1404
推导了非线性光子晶体线缺陷波导中抽运光群速度与光参量放大增益的理论模 型. 理论结果表明, 慢光抽运可以增强光参量放大效应. 为获得相同的增益, 当波导长度不变时, 慢光波导所需的抽运光功率可以减少为普通波导的(vgn/c)2; 当抽运光功率不变时, 慢光波导所需的长度可以减少为普通波导的(vgn/c)2, 其中n为普通波导的材料折射率, vg为慢光波导的群速度, c为真空中的光速. 数值计算结果验证了我们的理论预测.  相似文献   

15.
利用C基因组C0t-1 DNA比较分析稻属A, B, C, D基因组   总被引:4,自引:0,他引:4  
蓝伟侦  覃瑞  李刚  何光存 《科学通报》2006,51(12):1422-1431
以药用野生稻(CC) C0t-1 DNA作为探针, 对其自身体细胞染色体和栽培稻×药用野生稻杂交后代F1, 回交后代BC1以及宽叶野生稻(CCDD), 高秆野生稻(CCDD)和斑点野生稻(BBCC)体细胞染色体进行荧光原位杂交实验. 在药用野生稻体细胞染色体中, 同源染色体呈现相似的C0t-1 DNA杂交带型, 并对其核型进行了同源性聚类. 对F1 (AC)和2个BC1 (AAC和ACC)的杂交实验中, 在不封阻的情况下, 药用野生稻C基因组C0t-1 DNA探针能清晰地鉴别C组染色体, 而在A组染色体上信号分布很少, 说明A基因组与药用野生稻C基因组中高度重复序列同源性较低. 此外, 对宽叶野生稻、高杆野生稻和斑点野生稻3个四倍体体细胞染色体进行了FISH分析, 在24条C组染色体上均可观察到较强的杂交信号, B和D基因组的24条染色体上信号较少, 但在D组染色体上的信号较B组染色体的多, 说明D与C基因组的亲缘关系较B与C基因组的近. 进一步分析发现, 高杆野生稻D组染色体上的杂交信号要比宽叶野生稻D组染色体上的杂交信号多, 说明高杆野生稻的D基因组与C基因组的同源性要高, 这可能是高秆野生稻和宽叶野生稻同属于CCDD染色体组型但可区分为不同种的原因之一. 上述结果表明, C0t-1 DNA具有很强的种的特异性和依赖基因组型的特异性, 利用C0t-1 DNA作探针更能有效地对不同基因组进行FISH鉴定. 同时, 本研究采用F1植株和BC1植株, 即1个二倍体和2个三倍体人工选育杂种, 与宽叶野生稻、高杆野生稻和斑点野生稻进行了基于C基因组C0t-1 DNA杂交的比较分析, 对稻属异源四倍体的可能起源机制进行了初步探讨.  相似文献   

16.
合成了具有ZrCuSiAs型结构的Ba1-xSmxFFeAs和Eu1-xSmxFFeAs两个体系不同掺杂组分的样品, 并测量了它们的电阻率和磁化率. 发现在BaFFeAs和EuFFeAs这两个体系中用稀土金属离子取代碱土金属离子能够压制其在电阻率行为上表现出的反常, 并在样品中引入超导电性. 名义组分为Ba0.5Sm0.5FFeAs的样品超导转变温度为54 K, 名义组分为Eu0.5Sm0.5FFeAs的样品超导转变温度为51 K, 这说明铁砷氟化物和与其结构相同的氧磷族元素化物具有相同的超导转变温度.  相似文献   

17.
棉铃虫和烟青虫杂交子一代幼虫的精巢和染色体观察   总被引:4,自引:1,他引:3  
汤清波  阎云花  赵新成  王琛柱 《科学通报》2005,50(11):1103-1108
雌性棉铃虫Helicoverpa armigera (Hübner)和雄性烟青虫Helicoverpa assulta Guenée杂交(正交), 其杂交子一代在成虫期可分为可育的雄性个体和生殖器官畸形的不育个体. 雌性烟青虫和雄性棉铃虫杂交(反交), 其杂交子一代在成虫期雌性和雄性都可育. 反交子一代5龄2 d期幼虫没有精巢的个体为正常雌性, 有精巢的个体为正常雄性, 其精巢的长和宽与亲本的精巢没有显著差异(P > 0.05). 正交子一代5龄期幼虫的每个个体均可观察到精巢, 但是根据幼虫精巢发育正常与否, 可把他们分为明显的2类: 第1类幼虫个体的精巢长和宽与亲本精巢的差异不显著(P > 0.05); 第2类幼虫个体的精巢长和宽显著小于亲本的精巢(P < 0.01). 脑细胞染色体有丝分裂观察显示, 正交和反交子一代幼虫的脑细胞有丝分裂中期Ⅰ双倍体染色体均为2n = 62, 数目与其亲本的相同; 精母细胞减数分裂观察表明, 正交第1类幼虫和反交雄性幼虫精母细胞的减数分裂中期Ⅰ染色体数目与其亲本的相同, 证实其单倍体染色体n = 31; 正交第2类幼虫没有观察到任何精母细胞的减数分裂相. 联系成虫期杂交子一代的特征, 可知正交子一代第1类幼虫发育为正常可育的雄性个体, 第2类幼虫发育为畸形的不育个体. 推断正交子一代中第2类幼虫不育的直接原因是精巢发育异常和精母细胞不能够进行减数分裂, 从而不能产生正常的精细胞.  相似文献   

18.
水、旱稻根系性状与抗旱性相关分析及其QTL定位   总被引:22,自引:1,他引:21  
以粳型旱稻品种IRAT109和粳型水稻品种越富杂交产生的包含116个DH株系的群体为材料, 构建了一个含165个标记(94个RFLP标记和71个SSR标记)的水稻分子连锁图. 在根管培养条件下, 考查了分蘖期DH群体及其亲本的根数、根基粗、最长根长、根鲜重、根干重、根茎鲜重比及根茎干重比等性状. 在旱田、水田条件下考查了DH群体的单株产量, 计算抗旱系数(旱田单株产量/水田单株产量). 相关分析结果表明, 根基粗、最长根长与抗旱系数呈显著正相关, 根数与抗旱系数呈极显著负相关. 抗旱性强的材料在根系性状上主要表现为根粗较粗、根系较长和根数较少等特点. 利用QTLMAPPER version1.0定位了控制根系性状的QTL, 并进行了QTL与环境互作分析. 共检测到控制7个根系性状的18个加性QTL和18对上位性QTL. 发现了一些贡献率较高、无环境互作的QTL. 控制最长根长的1对上位性QTL mrl3mrl8对表型变异的贡献(简称贡献率)为21.51%, 控制根基粗的1对上位性QTL brt3brt11a贡献率为13.03%, 控制根鲜重和根干重的1个加性和1对上位性QTL贡献率分别为13.50%和25.64%. 共检测到9个加性QTL和2对上位性QTL存在环境互作. 其中根基粗、最长根长没检测到环境互作QTL. 此外, 根据QTL的贡献率大小、与环境互作大小和与抗旱系数的连锁关系等, 分析了一些重要QTL应用于稻作抗旱分子育种的可行性.  相似文献   

19.
董承光  丁业掌  郭旺珍  张天真 《科学通报》2007,52(20):2374-2378
Gl2e基因是控制棉花植株和种子无腺体的一个基因, 是低酚棉育种中一个重要的基因资源. 本研究利用陆地棉遗传标准系TM-1和海岛棉无腺体突变品系海1构建的1599个F2单株, 对无腺体突变基因Gl2e进行了精细定位. 遗传研究进一步证明, 该基因是一不完全显性单基因. 结合本实验室的棉花海陆种间遗传连锁图谱, 利用SSR标记将Gl2e基因定位在CIR362和NAU2251b, NAU3860b, STV033之间, 遗传距离分别为9.27和0.96 cM.  相似文献   

20.
ENU诱变获得4种白斑小鼠及对突变基因的染色体定位   总被引:13,自引:1,他引:13  
“表型驱动法”是通过诱变、定位及克隆突变基因来研究基因功能的一种手段. 以ENU处理C57BL/6J(B6)雄鼠150只, 繁殖后代小鼠3860只, 筛查到有突变表型的小鼠210只, 经传代实验得到能够遗传的突变鼠10余种, 其中4种为呈显性遗传的白斑突变, 它们是Wbct, W&#8722;1Bao, W&#8722;2Bao和W&#8722;3Bao, 共同表现为腹部、四肢末端及尾部的局部白化. 为定位这些突变基因, 选择平均分布于小鼠基因组且在B6与DBA/2J(D2)间有差异的微卫星标记39个, 区分(B6×D2)×D2的F2代有无白斑表型后, 用39个微卫星进行基因组扫描. 结果表明, W&#8722;1Bao突变基因与D5Mit168的LOD值为0.56, 与D5Mit352的LOD值为4.47. 在此基础上, 逐步选择接近突变基因的微卫星D5Mit290, D5Mit312, D5Mit356及D5Mit308, 扩大F2的数量至537只, 将W&#8722;1Bao突变基因定位在第5号染色体D5Mit356及D5Mit308之间, 距着丝粒约42.19 cM; 同理, 将W&#8722;2Bao及W&#8722;3Bao突变基因也定位在与W&#8722;1Bao相近的区域, Wbct突变基因定位于第1号染色体距着丝粒约41.6 cM处. 经过检索小鼠基因组数据库和对染色体局部基因的逐个分析, 认为kit基因为W&#8722;1Bao, W&#8722;2Bao及W&#8722;3Bao白斑突变的候选基因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号