首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dobson CM 《Nature》2004,432(7019):824-828
Chemical space--which encompasses all possible small organic molecules, including those present in biological systems--is vast. So vast, in fact, that so far only a tiny fraction of it has been explored. Nevertheless, these explorations have greatly enhanced our understanding of biology, and have led to the development of many of today's drugs. The discovery of new bioactive molecules, facilitated by a deeper understanding of the nature of the regions of chemical space that are relevant to biology, will advance our knowledge of biological processes and lead to new strategies to treat disease.  相似文献   

2.
Stockwell BR 《Nature》2004,432(7019):846-854
Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore 'biological-activity space'. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars--uncharted territory is explored using a system of coordinates that describes where each new feature lies.  相似文献   

3.
Molecular mechanisms that confer antibacterial drug resistance   总被引:28,自引:0,他引:28  
Walsh C 《Nature》2000,406(6797):775-781
Antibiotics--compounds that are literally 'against life'--are typically antibacterial drugs, interfering with some structure or process that is essential to bacterial growth or survival without harm to the eukaryotic host harbouring the infecting bacteria. We live in an era when antibiotic resistance has spread at an alarming rate and when dire predictions concerning the lack of effective antibacterial drugs occur with increasing frequency. In this context it is apposite to ask a few simple questions about these life-saving molecules. What are antibiotics? Where do they come from? How do they work? Why do they stop being effective? How do we find new antibiotics? And can we slow down the development of antibiotic-resistant superbugs?  相似文献   

4.
目的:分析小分子药物的优势,提出小分子库是良好的药物筛选库。方法:首先从DrugBank中筛选单靶点小分子药物,构建靶点—结构网络,然后探索小分子药物的化学空间,最后对主要化学性质进行统计分析。结果:小分子药物靶点在结构分类上α/β类型最多(47.98%),并且最古老的fold覆盖了较多的药物和靶点;另外,小分子药物有着良好的分布多样性,而且化学性质也有较好的优势。结论:单靶点结构网络的构建为进一步对天然产物的演变研究提供了新思路,小分子库是药物筛选良好的化合物库。  相似文献   

5.
Establishing the structure of molecules and solids has always had an essential role in physics, chemistry and biology. The methods of choice are X-ray and electron diffraction, which are routinely used to determine atomic positions with sub-?ngstr?m spatial resolution. Although both methods are currently limited to probing dynamics on timescales longer than a picosecond, the recent development of femtosecond sources of X-ray pulses and electron beams suggests that they might soon be capable of taking ultrafast snapshots of biological molecules and condensed-phase systems undergoing structural changes. The past decade has also witnessed the emergence of an alternative imaging approach based on laser-ionized bursts of coherent electron wave packets that self-interrogate the parent molecular structure. Here we show that this phenomenon can indeed be exploited for laser-induced electron diffraction (LIED), to image molecular structures with sub-?ngstr?m precision and exposure times of a few femtoseconds. We apply the method to oxygen and nitrogen molecules, which on strong-field ionization at three mid-infrared wavelengths (1.7, 2.0 and 2.3?μm) emit photoelectrons with a momentum distribution from which we extract diffraction patterns. The long wavelength is essential for achieving atomic-scale spatial resolution, and the wavelength variation is equivalent to taking snapshots at different times. We show that the method has the sensitivity to measure a 0.1?? displacement in the oxygen bond length occurring in a time interval of ~5?fs, which establishes LIED as a promising approach for the imaging of gas-phase molecules with unprecedented spatio-temporal resolution.  相似文献   

6.
Antimicrobial peptides of multicellular organisms.   总被引:138,自引:0,他引:138  
Michael Zasloff 《Nature》2002,415(6870):389-395
Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?  相似文献   

7.
B L Stoddard  D E Koshland 《Nature》1992,358(6389):774-776
To validate procedures of rational drug design, it is important to develop computational methods that predict binding sites between a protein and a ligand molecule. Many small molecules have been tested using such programs, but examination of protein-protein and peptide-protein interactions has been sparse. We were able to test such applications once the structures of both the maltose-binding protein (MBP) and the ligand-binding domain of the aspartate receptor, which binds MBP, became available. Here we predict the binding site of MBP to its receptor using a 'binary docking' technique in which two MBP octapeptide sequences containing mutations that eliminate maltose chemotaxis are independently docked to the receptor. The peptides in the docked solutions superimpose on their original positions in the structure of MBP and allow the formation of an MBP-receptor complex. The consistency of the computational and biological results supports this approach for predicting protein-protein and peptide-protein interactions.  相似文献   

8.
Small-molecule inhibitors of protein function are powerful tools for biological analysis and can lead to the development of new drugs. However, a major bottleneck in generating useful small-molecule tools is target identification. Here we show that Caenorhabditis elegans can provide a platform for both the discovery of new bioactive compounds and target identification. We screened 14,100 small molecules for bioactivity in wild-type worms and identified 308 compounds that induce a variety of phenotypes. One compound that we named nemadipine-A induces marked defects in morphology and egg-laying. Nemadipine-A resembles a class of widely prescribed anti-hypertension drugs called the 1,4-dihydropyridines (DHPs) that antagonize the alpha1-subunit of L-type calcium channels. Through a genetic suppressor screen, we identified egl-19 as the sole candidate target of nemadipine-A, a conclusion that is supported by several additional lines of evidence. egl-19 encodes the only L-type calcium channel alpha1-subunit in the C. elegans genome. We show that nemadipine-A can also antagonize vertebrate L-type calcium channels, demonstrating that worms and vertebrates share the orthologous protein target. Conversely, FDA-approved DHPs fail to elicit robust phenotypes, making nemadipine-A a unique tool to screen for genetic interactions with this important class of drugs. Finally, we demonstrate the utility of nemadipine-A by using it to reveal redundancy among three calcium channels in the egg-laying circuit. Our study demonstrates that C. elegans enables rapid identification of new small-molecule tools and their targets.  相似文献   

9.
Wells JA  McClendon CL 《Nature》2007,450(7172):1001-1009
Targeting the interfaces between proteins has huge therapeutic potential, but discovering small-molecule drugs that disrupt protein-protein interactions is an enormous challenge. Several recent success stories, however, indicate that protein-protein interfaces might be more tractable than has been thought. These studies discovered small molecules that bind with drug-like potencies to 'hotspots' on the contact surfaces involved in protein-protein interactions. Remarkably, these small molecules bind deeper within the contact surface of the target protein, and bind with much higher efficiencies, than do the contact atoms of the natural protein partner. Some of these small molecules are now making their way through clinical trials, so this high-hanging fruit might not be far out of reach.  相似文献   

10.
Weaver JC  Vaughan TE  Astumian RD 《Nature》2000,405(6787):707-709
There is evidence that animals can detect small changes in the Earth's magnetic field by two distinct mechanisms, one using the mineral magnetite as the primary sensor and one using magnetically sensitive chemical reactions. Magnetite responds by physically twisting, or even reorienting the whole organism in the case of some bacteria, but the magnetic dipoles of individual molecules are too small to respond in the same way. Here we assess whether reactions whose rates are affected by the orientation of reactants in magnetic fields could form the basis of a biological compass. We use a general model, incorporating biological components and design criteria, to calculate realistic constraints for such a compass. This model compares a chemical signal produced owing to magnetic field effects with stochastic noise and with changes due to physiological temperature variation. Our analysis shows that a chemically based biological compass is feasible with its size, for any given detection limit, being dependent on the magnetic sensitivity of the rate constant of the chemical reaction.  相似文献   

11.
The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H(1) receptor (H(1)R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H(1)R complex with doxepin, a first-generation H(1)R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp?428(6.48), a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H(1)R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys?191(5.39) and/or Lys?179(ECL2), both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H(1)R antagonist specificity against H(1)R.  相似文献   

12.
利用杂化的密度泛函方法从理论上研究了不同胍基衍生物的几何结构、电子结构、轨道分布、离解能、化学势等理化性质,并对各理化指标的计算结果进行了比较,比较发现,以适当的小原子基团代替原来体系中的大原子基团,可以在简化生物分子量化计算的同时,得到可信度很高的理论结果,计算结果还显示,对生物分子的简化遵循着一定的原则,需要一定的技巧。  相似文献   

13.
概述了大肠杆菌中激活外排泵和减少摄入量这两个重要的耐药机制和克服它们的新策略,主要包括近年来在理解外排泵系统的物理结构、功能和调控子中的进步和有利于开发以外排泵为靶位的药物研究进展。  相似文献   

14.
生物大分子是近年来生命科学研究的热点和难点之一,有关蛋白质的各类研究也是人们比较感兴趣的课题.平衡透析法是定量研究蛋白质与有机小分子相互作用的经典方法.通过平衡透析法的研究我们可以讨论蛋白质与有机小分子的结合数目、结合平衡常数及作用力情况等.近年来,国内外学者在此方面做了大量的工作,提出了各种各样的结合模型.本文就此方面的研究进行综述.  相似文献   

15.
使用放射性同位素3H标记的化合物3H-TdR、3H-Urd、3H-Leu作为培养中的动物细胞生物合成的前体,定时对培养细胞做放射性检测,表明生物大分子合成随时间而上升.进一步研究表明,异三尖杉酯碱对生物大分子合成有明显的抑制作用.  相似文献   

16.
The interaction of small molecules with DNA is of interest because it is important in the design of new and more efficient drugs targeted to DNA. The metal complexes, natural antibiotics, and a lot of other planar heterocyclic cations, have been investigated for their DNA  相似文献   

17.
18.
Sakellariou D  Le Goff G  Jacquinot JF 《Nature》2007,447(7145):694-697
Nuclear magnetic resonance (NMR) can probe the local structure and dynamic properties of liquids and solids, making it one of the most powerful and versatile analytical methods available today. However, its intrinsically low sensitivity precludes NMR analysis of very small samples-as frequently used when studying isotopically labelled biological molecules or advanced materials, or as preferred when conducting high-throughput screening of biological samples or 'lab-on-a-chip' studies. The sensitivity of NMR has been improved by using static micro-coils, alternative detection schemes and pre-polarization approaches. But these strategies cannot be easily used in NMR experiments involving the fast sample spinning essential for obtaining well-resolved spectra from non-liquid samples. Here we demonstrate that inductive coupling allows wireless transmission of radio-frequency pulses and the reception of NMR signals under fast spinning of both detector coil and sample. This enables NMR measurements characterized by an optimal filling factor, very high radio-frequency field amplitudes and enhanced sensitivity that increases with decreasing sample volume. Signals obtained for nanolitre-sized samples of organic powders and biological tissue increase by almost one order of magnitude (or, equivalently, are acquired two orders of magnitude faster), compared to standard NMR measurements. Our approach also offers optimal sensitivity when studying samples that need to be confined inside multiple safety barriers, such as radioactive materials. In principle, the co-rotation of a micrometre-sized detector coil with the sample and the use of inductive coupling (techniques that are at the heart of our method) should enable highly sensitive NMR measurements on any mass-limited sample that requires fast mechanical rotation to obtain well-resolved spectra. The method is easy to implement on a commercial NMR set-up and exhibits improved performance with miniaturization, and we accordingly expect that it will facilitate the development of novel solid-state NMR methodologies and find wide use in high-throughput chemical and biomedical analysis.  相似文献   

19.
Čorić I  List B 《Nature》2012,483(7389):315-319
Acetals are molecular substructures that contain two oxygen-carbon single bonds at the same carbon atom, and are used in cells to construct carbohydrates and numerous other molecules. A distinctive subgroup are spiroacetals, acetals joining two rings, which occur in a broad range of biologically active compounds, including small insect pheromones and more complex macrocycles. Despite numerous methods for the catalytic asymmetric formation of other commonly occurring stereocentres, there are few approaches that exclusively target the chiral acetal centre and none for spiroacetals. Here we report the design and synthesis of confined Br?nsted acids based on a C(2)-symmetric imidodiphosphoric acid motif, enabling a catalytic enantioselective spiroacetalization reaction. These rationally constructed Br?nsted acids possess an extremely sterically demanding chiral microenvironment, with a single catalytically relevant and geometrically constrained bifunctional active site. Our catalyst design is expected to be of broad utility in catalytic asymmetric reactions involving small and structurally or functionally unbiased substrates.  相似文献   

20.
T Roenneberg  H Nakamura  J W Hastings 《Nature》1988,334(6181):432-434
The circadian clock is considered to be a universal feature of eucaryotic organisms, controlling the occurrence and rates of many different aspects of life, ranging from single enzymatic reactions and metabolism to complex behaviours such as activity and rest. Although the nature of the underlying cellular/biochemical oscillator is still unknown, many substances are known to influence either phase or period of circadian rhythms in different organisms. These include D2O, electrolytes and ion channel inhibitors, small organic molecules such as alcohols and aldehydes, inhibitors of protein synthesis and amino-acid analogues. Certain transmitter and neurochemical drugs also influence the circadian clock in higher animals. We report here that the period of free-running circadian rhythms in the unicellular marine alga Gonyaulax polyedra is shortened by extracts from mammalian cells. The effect is dose-dependent, accelerating the circadian clock by as much as 4 hours per day. The substance responsible for this effect has been isolated from bovine muscle and identified as creatine. Authentic creatine has identical biological effects at micromolar concentrations and is known in animal systems for its involvement in cellular energy metabolism. A period shortening substance with similar chemical properties is also present in extracts of Gonyaulax itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号