首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
为了探寻一种在中高温场合使用的平板式太阳能集热器,作者设计和开发了小流量、大温差的蛇形管平板式太阳能集热器,并进行了空晒试验和瞬时效率试验。试验结果表明:集热器的空晒温度可达170.2℃,热损系数为5.239W/(m2.℃),载热工质进口温度70℃时效率52%-55%。通过对集热器各部分温度变化趋势的比较,提出改进措施,以提高蛇形管平板式集热器在中高温工况下的集热性能。  相似文献   

2.
干涉型Al-N-O选择性吸收表面的研究   总被引:2,自引:0,他引:2  
利用Al-N-O选择性吸收层之间产生的干涉效应,改善吸收表面挑学性能(吸收率α和发射率ε),通过工艺确定了2种不同金属填充因子的双吸收层结构,与多层渐变吸收表面相比双吸收层结构吸收表面具有膜系结构简单、高温下性能稳定、发射率较低等优点,吸收表面的吸收率α为0.93 ̄0.95,发射率ε(353K)为0.04 ̄0.06。  相似文献   

3.
介绍了一种用于红外动态场景生成的新型可见光/红外图像转换器芯片.采用离子刻蚀工艺制作芯片的吸收辐射膜,其可见光波段吸收率可以达到98.5%以上,3~5μm波段的红外发射率可以达到0.73,8~12μm波段的发射率达到0.82.测试证明,此吸收辐射膜完全满足红外图像转换芯片的应用要求.  相似文献   

4.
基于荧光紫外加速老化实验,追踪三元乙丙橡胶的老化过程,研究添加纳米防老化剂对材料表观老化行为和抗老化能力的影响,并利用傅里叶红外光谱和紫外吸收光谱分析纳米防老化剂的作用机制.随着老化时间的延长,试样表面粗糙度增加,色差和失光率变大,羰基指数上升,紫外吸收率下降.傅里叶红外光谱分析显示,表面二氧化硅膜包覆抑制了纳米二氧化钛的光催化作用,延缓了三元乙丙橡胶的老化进程.添加纳米防老化剂后,试样表面孔洞密度减少,色差和失光率分别降低0.97和22.29%,羰基指数下降0.06,紫外光吸收率升高3.92%,三元乙丙橡胶的抗紫外老化能力提高.  相似文献   

5.
光谱选择性吸收涂层是提高太阳能光热转换效率的核心部分,其在太阳光能量集中的光谱波段保持较高吸收率,同时拥有较低的红外发射率,即减少自身向外辐射的能量.选用直流-射频磁控溅射镀膜的方法,在抛光的316L不锈钢基片上制备了以金属Mo为红外反射层,Mo-Al_2O_3为吸收层,Al_2O_3为减反射层的Mo/Mo-Al_2O_3/Al_2O_3选择吸收膜系,并对其进行大气中400℃退火处理,分析其热稳定性和选择吸收性能的衰减机理.通过实验优化,具有双吸收层结构的选择吸收膜系具有最优的选择吸收性能,吸收率为0.922,发射率为0.029.所制备的薄膜表面平整致密,无明显的大颗粒缺陷.对优选制备参数下的选择吸收膜系进行退火处理,结果表明退火后选择性吸收膜系的发射率上升约1.6%,膜系的反射率极小值的位置与退火前无明显变化,反射率骤升阈值均发生蓝移.利用拉曼光谱对太阳能选择性吸收膜系的高温热稳定性进行分析,当退火时间为1、3h时,开始出现了MoO_3特征峰,说明空气中的氧原子向吸收层中进行了扩散,当退火时间达到5h时,出现了Fe_2MoC的特征峰,说明吸收涂层各亚层之间的元素发生了迁移.  相似文献   

6.
本文介绍了一种新型太阳能选择性吸收膜(简称85-A膜)。文中详述了该种膜层的制作工艺及光学特性,列出了它的吸收率α_S、法向热发射率ε_n等参数并与国外有关文献进行了对比。最后提供了该种膜层在自然环境中试运行后的稳定性数据。  相似文献   

7.
目的通过分析不同老化沥青掺量(0%、10%、20%、30%)的再生沥青的温度敏感性、高低温性能、蠕变疲劳性能和微观分析等,系统地研究老化沥青介入下SBS改性沥青的特性.方法对不同沥青的动力黏度、黏温指数(VTS)进行测定和分析;采用高温动态剪切流变仪、弯曲梁流变仪、直接拉伸仪对样品试验,利用荧光显微镜分析了沥青样品成分.结果在高低温下,再生沥青的黏度变化不一致;当老化沥青掺量大于30%时,才能改善再生沥青的温度敏感性;随着老化沥青掺量的增加,再生SBS改性沥青具有更好的高温抗车辙性能,临界开裂温度温度则不断升高;老化沥青少量掺加有利于提高再生沥青的疲劳寿命,大量掺加会降低沥青的蠕变疲劳性能.结论随着老化沥青掺量的增加,再生SBS改性沥青具有更好的高温抗车辙性能,但再生沥青的低温开裂性降低,蠕变疲劳性能下降,SBS分布变得不均匀且粒径大小不一.  相似文献   

8.
为了研究就地热再生施工时高温加热(大于200℃)对不同深度老化沥青流变性能的影响,采用红外热像仪测量各个加热阶段的路表温度,分别采用动态剪切流变仪(DSR)、弯曲梁流变仪(BBR)试验测试高温加热后不同深度老化沥青的高低温流变性能。结果表明:加热后的路表温度高达240℃,同一横截面上存在温度离析;高温加热主要使上面层表面2 cm沥青(RS2)发生二次老化,加热后不同深度沥青老化梯度增大;高温加热后RS2的温度敏感性增加,高温性能增强,低温性能衰减较快。结论可为优化就地热再生老化沥青胶结料性能评价提供理论参考。  相似文献   

9.
利用FLUENT对58×1 800mm全玻璃真空管在不同发射率、真空度下空晒热性能进行数值模拟与分析,并通过空晒实验来验证模拟结果的正确性.数值分析结果表明:发射率越低,真空管的热损失越小,真空管的热性能越好.真空管空晒热性能随真空夹层压强的增加而减小,真空管空晒性能变化主要位于10-1~10Pa范围,当压强小于10-1 Pa或大于10Pa时,由真空夹层间气体的导热损失引起的真空管热性能变化已不明显,为了保证良好的真空管热性能,真空夹层的真空度应当维持在10-2 Pa的数量级.  相似文献   

10.
本文根据流态化原理,提出一种新的聚焦型集热器。这种集热器利用空气一石墨微粒流化床层直接吸收聚集的太阳能,其吸收率接近于1。由于石墨微粒和空气进行充分的混合和热交换,使得空气的温度接近于石墨微粒的温度。这种集热器和现有的聚焦型集热器比较,具有结构简单,热效率高的特点,可承受高的热负荷,并能直接获得高温空气,是一种比较理想的聚焦型集热器。由于停止供风时,固定床层是良好的绝热体,所以又可作为蓄热器用。  相似文献   

11.
以25μm厚充气可展结构膜材Kapton(聚酰亚胺膜)为研究对象,选取6种温度工况(20,50,80,110,140,170℃)对其进行高温下单轴循环拉伸试验.通过分析不同循环次数和温度下的应力-应变数据,阐释了高温循环荷载作用下材料的受力机理与性能表征,分别建立了循环弹性模量与循环次数和温度的关系式,并获得了对棘轮应变以及滞回环面积等力学性能参数的影响规律.试验和分析结果表明:随着循环次数的增加,弹性模量逐步增大,滞回环面积减小;高温使得弹性模量显著降低,而滞回环面积增大;以最后一次循环加载后的结果来看,温度对TD(垂直膜材长度方向)的棘轮应变影响更大.研究所得结论可为极端温度场下的充气可展结构设计及在轨交变高低温测试提供参考.  相似文献   

12.
为探究使用环境中的温度变化对聚氯乙烯(polyvinylchloride, PVC)膜材料拉伸蠕变性能的影响,选取两种不同织物密度的PVC双轴向经编膜材料,在-40~40℃的交变温度环境中,分别进行200、300和400次循环处理,测试处理前后材料的拉伸与蠕变性能。结果表明:相同高低温交变处理次数下,密度低的PVC膜材料更易受到交变温度场的影响;材料的拉伸蠕变性能随交变处理次数的增加呈先上升后下降的趋势;200次交变温度处理对材料性能的影响较小,400次交变温度处理后材料的拉伸与蠕变性能明显下降;交变温度处理后PVC膜材料的拉伸蠕变性能的各向异性表现得更加明显。  相似文献   

13.
以平纹铺层和三维角联锁碳纤维/环氧树脂复合材料为研究对象,探究其在180℃高温下分别老化4、8、16和32 d后的低速冲击响应,并结合其冲击后弯曲性能,比较两种结构复合材料抗冲击性能随老化时间的变化规律。结果表明:随着老化时间的增加,冲击加载下平纹铺层和三维角联锁纤维环氧树脂两种复合材料试件的最大冲击载荷减小,能量吸收率增大,承载性能退化;相同老化条件下,三维角联锁结构试件的剩余模量和强度保留率均高于平纹铺层试件。两者微观形貌的分析表明:平纹铺层结构试件易在热氧老化过程中形成连续的层间裂纹,并在外加载荷作用下扩展造成层间失效;三维角联锁结构试件因厚度方向的接结纱作用,界面裂纹扩展受阻,从而缓解热氧老化引起的界面性能退化。  相似文献   

14.
针对折射率可调的无色透明TiO2涂层的最新研究进展,本文通过分析太阳能集热器真空管表面的由SiO2、折射率可调的TiO2组成的三层减反膜的反射损耗,得出了最优化的膜层组合。此SiO2-TiO2-TiO2三层减反膜结构在400~700nm的波段范围内,可见光的透过率可以达到99.5%以上。此结构减反膜以同种材质制备多层不同折射率薄膜,则各膜之间无膜间应力和工艺匹配的限制,为低成本地制备太阳能集热器真空管等的曲面多层减反膜提供了可能。  相似文献   

15.
区别了加热炉内炉气对炉壁及其对钢坯的平均射线行程,给出计算炉气对炉壁及其对钢坯的平均射线行程的简化表达式,并应用Gauss-Laguerre积分公式计算上述平均射线行程.考虑加热炉内炉气的非灰辐射特性,指出三元辐射体系(炉气-炉壁-钢坯)中炉气存在2种发射率和6种吸收率.以某轧钢厂的一座步进梁式加热炉为例,采用Leckner级数式模拟各炉段上炉膛炉气的发射率和吸收率.结果表明,对加热炉内炉气的发射率和吸收率进行上述的区别处理是必要的,为准确求解炉膛内的辐射热交换创造了条件.  相似文献   

16.
为了提高柴油机多品位、大温差余热的回收利用率,提出了一种低损跨临界有机朗肯联合循环,其中高温级循环用于回收温度较高的柴油机排气余热和废气再循环(EGR)余热,低温级循环回收柴油机冷却水余热、增压空气余热、与高温级循环换热后的排气余热和EGR余热.高温级对比分析了3种硅氧烷工质MM、MDM和D4,低温级选用了R143a,模拟研究了高低温级参数对循环性能的影响.结果表明:高低温级均存在最优的蒸发压力,高温级冷凝压力在允许范围内越低越好;高温级采用MM较MDM和D4循环性能更好,循环净功最高可以达到36.36,kW,损只有4.5,kW;各部分余热的利用率均在86%以上;增加高低温级的回热效能均可以提高循环性能.  相似文献   

17.
为研究不同调制比对TC4/ZrB_2(tTC4∶tZrB_2)纳米多层膜结构和机械性能的影响,采用磁控溅射镀膜技术在Si基底上设计制备了一系列具有不同调制比(tTC4∶tZrB_2)的TC4/ZrB_2纳米多层薄膜,利用X线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(HRTEM)和纳米压痕系统对多层膜的晶体结构、断面形貌、硬度、弹性模量和膜基结合情况进行测量,并通过退火处理对多层膜的热稳定性进行分析.结果表明:界面的扩散和畸变抑制了两调制层的结晶生长,使多层膜呈非晶结构.在tTC4∶tZrB_2为1∶5时,多层膜的硬度和弹性模量均达到最大,分别为22.40 GPa和263.11 GPa.在550℃退火后,多层膜硬度增加约2.6GPa.分析认为,两材料的模量差和界面处形成的交变应力场强化了材料的硬度,而混合界面的存在增强了多层膜的高温稳定性能.  相似文献   

18.
采用反应磁控溅射技术制备了一系列具有不同调制周期的VN/(Ti,Al) N纳米多层膜.利用高分辨透射电子显微镜、X-射线衍射仪和微力学探针表征了纳米多层膜的微结构和力学性能,从而研究其微结构与力学性能之间的关系.结果表明,小调制周期时,VN/(Ti,Al) N纳米多层膜沿薄膜生长方向呈现出具有面心立方(111)晶面择优取向的共格外延生长结构.由于存在晶格错配,在共格界面作用下,VN和(Ti,Al)N调制层分别受到拉、压应力,在多层膜中产生以调制周期为周期的交变应力场.这种应力场大大阻碍了薄膜中位错穿过界面的运动,从而导致薄膜产生硬度和弹性模量异常升高的超硬效应,并在调制周期为5.6 nm时,达到硬度和弹性模量的最高值38.4GPa和421 GPa.进一步增加调制周期,两调制层之间产生非共格界面,破坏了薄膜中的交变应力场,薄膜的硬度和弹性模量也随之降低.  相似文献   

19.
酸性腐蚀和极端高低温等恶劣的实际应用环境下,常规的静电纺纳米纤维空气过滤膜存在易变形和失效等风险.本研究以耐化学腐蚀、耐高低温的嵌段共聚物聚醚酰胺(polyether-block-amide, Pebax)为原料,通过添加曲拉通表面活性剂调控纺丝液性质,制备了新型Pebax纳米纤维空气过滤膜,并系统探究了该滤膜的特性和空气过滤性能.结果表明:该Pebax纳米纤维的平均直径为(129±31) nm,在5.3 cm/s的风速测试条件下,对0.3μm空气颗粒物(PM0.3)的过滤效率高达98.37%,过滤阻力为100.67 Pa;该Pebax纳米纤维膜对细颗粒物的去除以物理过滤机制为主,即使经高低温老化处理后,过滤效率仅下降1.13个百分点;耐酸性腐蚀试验进一步验证了该Pebax纳米纤维膜具有良好的过滤稳定性.该静电纺Pebax纳米纤维膜可用于化工厂、燃煤电厂等产生的高温、酸性尾气中细颗粒物的过滤去除,具有良好的应用前景.  相似文献   

20.
为了研究高温对燃煤电厂玻璃钢板材(以下简称:FRP板材)力学性能的影响,以90℃作为高温环境,设置0 d、30 d、60 d、90 d四个测试时间点,对以"缠绕纱/单向布/缠绕纱/单向布/缠绕纱/短切毡/缠绕纱"为基本结构、经缠绕成型制备的铺层厚度为3. 24 mm、6. 48 mm、9. 72 mm的FRP板材高温老化后的力学性能进行研究。结果表明:随着FRP板材厚度的增加,单向布含量增加,轴向弯曲和轴向拉伸强度均呈上升的趋势;压缩强度的变化趋势和树脂含量的变化趋势一致,表明树脂含量对材料的压缩强度起主要作用;高温老化对FRP板材的弯曲、拉伸、压缩强度均有一定的影响,其中,弯曲强度受高温老化的影响最小,压缩强度受高温老化的影响最为明显,三种试样在90℃老化90 d后,弯曲强度保留率均在85%以上,压缩强度保留率在70%左右; SEM测试表明,高温老化后试样出现明显的纤维拔出,表明纤维/树脂基体界面遭到破坏。最后,建议燃煤电厂FRP板材在制作过程中,重点控制树脂含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号