首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一类非线性代数方程组的迭代解法   总被引:1,自引:1,他引:0  
用Ortega与Rheinboldt的专著(多变量非线性方程组的迭代解法)的定理6.4.4.可得形如x Fx=b (1)的n元非线性代数方程组(其中映象F:R~n→R~n为单调与连续)对任意b∈R~n存在唯一解,但没有近似求解的算法,Dotson,Jr.的短文(1978,Math.Comput.)对映象F为单调且非膨胀的情形得到收敛于解的迭代程序。我们把映象F为单调且非膨胀的条件减弱为单调且满足Lipschitz条件,同样得到收敛于解的迭代程序,并对实际计算提出一些参考意见,有如下的一些结果:  相似文献   

2.
关于Gauss-Seidel迭代法的收敛准则   总被引:1,自引:0,他引:1  
在文[1]的定理2中,给出了当 a=sum from(i=1)to n a(i)<1时,有 Gauss—Seidel 迭代法收敛.本文是在当 a=sum from(j=1)to n a(j)≥1的情形下,给出新的判别准则。它放宽了文[1]中定理2的判别条件。设线性方程组X=AX+b (1)存在唯一解 x~*=(x_1~*,x_2~*,…,x_n~*)~T,则(1)的 Gauss—Seided 迭代程序为:(2)本文的主要结果:  相似文献   

3.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

4.
设E是任意实Banach空间,T:E→E是Lipschitz的增生算子,在∞∑n-0αn=∞,αn→0和lim sup βL(L 1)<1的条件下研究了带误差的Ishikawa迭代序列收敛到方程Tx=f的惟一解的问题.  相似文献   

5.
证明了若f:[a,b]→[a,b]为单调增加的连续函数,λ∈(0,1),定义Fλ:[a,b]→[a,b],Fλx=(1-λ)x+λf(x),x1∈[a,b],xn+1=Fλxn=Fλnx1,n≥1,则{xn}单调地收敛于f的1个不动点.  相似文献   

6.
设X是实Banach空间E的闭子空间,T:X→X是Lipschitz强伪压缩映象,x*为T的不动点.在关于{αn},{βn}为更广的条件下证明了带误差的Ishikawa型迭代序列强收敛于x*.并证明了当T:E→E是Lipschitz强增生算子时,带误差的Ishikawa型迭代序列强收敛到方程Tx=f的唯一解.文章结果推广和发展了文[1]的相应结果.  相似文献   

7.
设K是实Banach空间X中非空凸子集,T:K→K为Lipschitz φ-半压缩算子,设{αn},{bn},{cn},{α′n},{b′n},{c′n}为[0,1]中实数列且满足一定条件,{μn}n=0^∞和{νn}n=0^∞是K中两任意有界序列,则带误差项的Ishikawa型迭代序列{xn}n=0^∞强收敛于T的唯一不动点;一个相关结果处理含φ-拟强增生算子的方程解的带误差项的Ishikawa型迭代逼近。  相似文献   

8.
非线性强增生算子方程解的迭代逼近定理   总被引:1,自引:1,他引:0       下载免费PDF全文
设1〈P≤2,X是实P-一致光滑的Banach空间,T:X→X是强增生算子.研究了用带误差的Ishikawa迭代程序:(xn+1)=(1-αn)xn+αn(f-Tyn+yn)+un, yn=(1-βn)xn+βn(f-Txn+xn)+υn,n≥0,)来逼近方程Tx=f解的问题,其中x0∈X,{un}{υn}是X中的有界序列,{αn},{βn},是[0,1]中的实数列.在无需假设条件αn→0之下,证明了,当T连续时,迭代序列{xn}强收敛到方程Tx=f的唯一解。  相似文献   

9.
设X是一实Banach空间,T∶X→X是Lipschitz连续的增生算子,在没有假设∑∞n=0αnβn<∞之下,本文证明了由xn 1=(1-αn)xn αn(f-Tyn) un以yn=(1-βn)xn βn(f-Txn) vn,n≥0产生的带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,并给出了更为一般的收敛率估计:若un=vn=0,n≥0,则有‖xn 1-x*‖≤(1-αn)‖xn-x*‖≤…≤∏in=0(1-αj)‖xn-x*‖,其中{αn}是(0,1)中的序列,满足γn≥4ηL(L 1)αn,n≥0。  相似文献   

10.
Banach空间中关于增生算子方程解带误差的Ishikawa迭代序列   总被引:1,自引:1,他引:0  
设X是任意实Banach空间,T:X→X是Lipschitz连续的增生算子,在没有假设∞∑n=0αnβn<∞之下,证明了由xn 1=(1-αn)xn αn(f-Tyn) un及yn=(1-βn)xn βn(f-Txn) vn,(A)n≥0生成的、带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,并给出了更为一般的收敛率估计:若un=vn=0,(A)n≥0,则有‖xn 1-x*‖≤(1-γn)‖xn-x*‖≤…≤n∏j=0(1-γj)‖x0-x*‖,其中{yn}是(0,1)中的序列,满足γn≥[1/2max{η,1-η}-1/4min{η,1-η}]αn,(A)n≥0.  相似文献   

11.
本文讨论多项式型迭代方程∑ni=1λifi(x)=F(x)在F(x)单调递减,没有端点限制情形下的单调递减的连续解及唯一解。  相似文献   

12.
设X是任意实Banach空间,T:XX是Lipschitz连续的增生算子.在没有假设∑∞n=0αnβn<∞之下,证明了带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,而且还给出了该序列更为一般的收敛率估计.  相似文献   

13.
研究了复合泛函方程T(T(x)-T(y))=T(x+y)+T(x-y)-T(x)-T(y)在泛函Φ(x,y)限制下的稳定性问题.证明了:若E为Banach空间,泛函Φ:E×E→[0,∞)连续使得级数Φ(x)d=sum (2-j-1Φ(2jx,2jx)) from j=1 to ∞在E的任一有界子集上一致收敛,F:E→E是连续映射且满足‖F(F(x)-F(y))-F(x+y)-F(x-y)+F(x)+F(y)‖≤Φ(x,y)(■x、y∈E),则存在唯一的连续2-齐次映射T:E→E满足以上复合泛函方程且‖T(x)-F(x)‖≤Φ(x),■x∈E.  相似文献   

14.
设 K是实 Banach空间 X中非空凸子集 ,T:K→K为 Lipschitzφ-半压缩算子 ,设 { an} ,{ bn} ,{ cn} ,{ a′n} ,{ b′n} ,{ c′n}为 [0 ,1 )中实数列且满足一定条件 ,{ μn}∞n=0 和 { νn}∞n=0 是 K中两任意有界序列 ,则带误差项的Ishikawa型迭代序列 { xn} ∞n=0 强收敛于 T的唯一不动点 ;一个相关结果处理含 φ-拟强增生算子的方程解的带误差项的 Ishikawa型迭代逼近 .  相似文献   

15.
设Q(q)=multiply from n=1 to ∞((1-q~n)(|q|<1))欧拉的五边形数定理为 Q(q)=sum from n=0 to ∞((-1)~nq~(n(3n+1))/2)(1-q~(2n+1))雅可比得到Q(q)~3=sum from n=0 to ∞((-1)~n(2n+1)q~(n+1)/2)本文得到Q(q)~2=sum from n=0 to ∞((-1)~nq~(n(n+1)/2)(1-q~(2n+2))p_n(q))其中p_n~h(q)=sum from r=0 to n(q~r(n-r)) 证明:由[1;p.36,eq.(3.3.6)] sum from j=0 to N((Q)_v/(q)_1(q)_(n-j)(-1)~iZ~iq~(j(j-1)/2))=(z)_N. (1)及[1;p.19,Cor.2.3.α=b=0,i=q,c=q~(2r+1)]  相似文献   

16.
设X为Banach空间,K为X的非空凸子集,且K+K K.设T:K→K为一致连续Φ-半压缩映射.设{αn}n∞=0和{βn}n∞=0为[0,1]中的2实数列,{un}n∞=0和{vn}n∞=0为K中序列并满足一定条件.如果{Tyn}有界,则带误差项的Ishikawa迭代序列{xn}n∞=0强收敛于方程T的唯一不动点.  相似文献   

17.
本文继[1]文之后继续讨论多项式型迭代方程∑ni=1λifi(x)=F(x)在F(x)非单调情形下连续解的存在性,同时讨论非单调解的唯一性和稳定性。  相似文献   

18.
本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K~m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K~m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5));  相似文献   

19.
本文给出了勒襄特(Legendre)级数sum from n=0 to ∞a_nP_n(z)在收敛椭园E_p上一点z_0=cosh(μ iβ_0)收敛的充分必要条件为级数sum from n=0 to ∞δ_ne~(nβ0~i)收敛,其中δ_n=n~(-(1/2))e~(nμ)a_n。本文证明了勒襄特级数的亚倍尔(Abel)型定理:若级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0),且sum from n=0 to ∞a_nP_n(z_0)收斂,则sum from n=0 to ∞a_nP_n(z)=sum from n=0 to ∞a_nP_n(z_0),这里z→z_0是在E_μ内沿与E_μ正交的双曲线H_(β_0)进行。本文还证明了勒襄特级数的刀培(Tauber)型定理:设级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0)为E_μ上一定点,令δ_n=n~(-(1/2))e~(nμ)a_n,如果δ_n=o(1/n),且sum from n=0 to ∞a_nP_n(z)=S,这里z→z_0是在E_μ内沿H_(β_0)进行,sum from n=0 to ∞a_nP_n(z_0)收敛,其和为S。  相似文献   

20.
设X是任意实Banach空间,K是X的非空凸子襅+K( )K,TK→技K是值域有界且一致连续的ψ-半压缩映象,则Ishikawa迭代过程强收敛到T的唯一不动点.由此可知,若T是ψ-强拟增生映象,则Ishikawa迭代序列强收敛到方程Tx=0的唯一解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号