共查询到20条相似文献,搜索用时 15 毫秒
1.
《南京工程学院学报(自然科学版)》2021,19(2)
为了解决传统的小尺度密集工程车辆检测算法存在检测速度慢、鲁棒性差、识别准确率低等问题,采用基于改进型YOLO v3的卷积神经网络工程车辆检测算法,使用目标框与真实框交并比作为损失函数替代聚类算法中的欧式距离,同时结合工程车辆检测时标注真实框的特点,对候选框进行聚类;改进评估模型的损失函数,构建适合小尺度密集车辆的网络结构.在自制数据集上进行试验,结果表明,该方法对小尺度密集工程车辆的检测精度明显提高,准确率能够达到81.1%,召回率能达到95.9%. 相似文献
2.
为解决多种天气与多种场景下主干道路行驶车辆检测存在的实时性、泛化能力差、漏检、定位不准确等问题,研究了基于TensorFlow深度学习框架的区域卷积神经网络(Faster R-CNN)算法,通过引入VGG16神经网络模型,优化ROI Pooling Layer,并采用联合训练方法,得到改进的算法模型。采用UA_CAR数据集进行模型训练,实现行驶中的车辆检测,测试结果与优化前Faster R-CNN比较,MAP提高了7.3个百分点,准确率提高了7.4个百分点,检测用时0.085 s,提高了对多种环境与场景的适应性。 相似文献
3.
为实现图书馆中机器人智能排架,提出一种基于卷积神经网络和混合注意力机制的书标检测模型。将DenseNet121引入YOLOv4以提高特征和梯度之间的传递效率,利用SPDC模块实现局部和全局特征融合,进而通过通道和空间混合注意力提高模型的特征表征能力。实验结果表明,模型的平均准确率、整体性能、参数量和模型大小均优于对比方法,且易于部署到嵌入式设备中实现在线检测,从而提高图书乱架治理的智能化水平。 相似文献
4.
道路上的交通标志包含大量的交通规则语义信息,快速、准确地获取这些信息有助于实现更高级别的辅助驾驶功能,从而提高车辆的安全性能。针对交通标志易受外界因素影响、类别间相似度高和尺寸微小的难点,本研究基于YOLOv5s模型,在数据预处理、特征提取、特征增强方面分别进行了针对性的改进。在数据预处理部分,利用颜色空间变换、几何变换矩阵来模拟实际场景中交通标志可能发生的颜色变化和形状变化,通过Mosaic算法、Copy-paste算法来提高训练集中微小交通标志的数量和背景的丰富性。在特征提取部分,构建了基于通道注意力标定的C3-TCA模块来提高模型对相似特征的辨别能力。在特征增强部分,通过双路径增强结构融合浅层特征和深层特征,并优化了预测分支的数量和下采样倍率,从而增加了对微小交通标志的检测精度。此外,还利用K-means++算法聚类先验框模板,基于CIoU度量构建边界框回归损失函数,从而降低边界框的回归难度。在TT100K和CCTSDB数据集上进行测试,模型的mAP@0.5指标分别为88.8%和83.5%,模型的检测速度分别为120.5 f/s和114.7 f/s。相较于现有交通标志检测模型,所构建模型在检测精度和检测速度上均达到了先进水平。针对数据增强算法、预测分支、通道注意力模块位置的对比实验进一步证明了所提具体优化方法的有效性。 相似文献
5.
焊接是一种重要的连接技术,但是焊缝缺陷会直接影响焊接结构的性能和使用寿命。焊缝缺陷的种类和特征的多样性增加了缺陷检测的复杂性。首先,提出一种新颖的并行残差注意力模块,在通道和空间维度上充分利用全局平均池化和全局最大池化来捕获全局特征,并与输入特征相乘,自适应的选择缺陷特征,显著提升了网络模型的特征表达能力。其次,针对焊缝缺陷长宽比悬殊的问题,利用注意力机制指导锚框自学习图像特征,预测锚框的位置和形状,围绕缺陷区域自适应生成非均匀分布的任意形状的感兴趣区域。最后,设计了端到端的由注意力引导感知的深度学习网络模型。为验证所提模型的有效性,在包含3 403张图像(其中1 001张有缺陷)的X射线焊缝数据集上,通过定性的分析和定量的对比。实验结果表明:检测指标平均精度均值(mean average precision, mAP)达到了66.74%,与原算法相比提升了5.78%,平均交并比(mean intersection over union, mIoU)提升了7.21%,基本满足对焊缝缺陷的高精度检测。 相似文献
6.
大多数遥感影像数据不可避免地受到云层的污染导致数据的失效。因此,对云进行检测是非常必要的预处理步骤。随着航天技术的飞速发展,更加轻便的卫星被设计出来,为了在这些算力有限的微小卫星上配备遥感影像预处理模型。设计一种高精度、算力要求低的轻量化云与云阴影检测网络模型具有重要意义。针对上述问题,本研究提出一种基于深度可分离卷积的轻量化卷积神经网络模型(Lightweight M-shaped Network,L-MNet),L-MNet网络模型是在M-Net( M-shaped Network)网络模型的基础上引入深度可分离卷积(Depthwise Separable Convolution),设计一种深度可分离卷积模块(DS-Conv Block),以减小算法的复杂度及计算量。实验结果表明,本研究所提方法在保证检测精度的前提下,可以有效减小像素级云检测的模型大小及计算量,有助于实现微小卫星在轨云检测的任务。 相似文献
7.
在工业生产制造过程中,由于生产失误致使产品表面缺陷不仅影响产品质量,同时也会损害企业形象.针对现有方法使用卷积神经网络只具备局部感受野的问题,将Vision Transformer(ViT)作为特征提取器,ViT可以通过位置编码与图像块间的互相运算充分利用图像中各部分间的关联特征.此外,针对现实场景下的缺陷区域是不规则、不连续的,现有的模型也未充分利用图像中通道与空间信息问题,提出了一种基于可变形卷积融合空间通道双注意力机制的方法(deformable convolutional and dual attention flow,简称DCA-Flow).对于不规则的缺陷区域,使用形变建模能力更强的可变形卷积进行特征提取,并利用通道与空间维度的注意力机制对可变形卷积提取的特征进行权重再调节.实验结果表明,所提出的方法能够有效检测各种类别物体中的表面缺陷,在多种物体中的平均AUROC值可达96.4%,相较基线方法最大值提高了1.4%,且具备更好的泛化性. 相似文献
8.
为提高互联网入侵检测方法的准确率,提出一种卷积神经网络与注意力机制结合的入侵检测方法。利用Borderline-SMOTE过采样算法和Min Max归一化对数据进行预处理,有效缓解入侵数据量差异较大问题,提升非平衡数据检测性能;使用卷积神经网络Inception结构多尺度对数据进行特征提取,并配合注意力机制进行维度更新,提高模型处理海量数据时特征表达的准确性。研究结果表明:入侵检测方法的平均准确率为99.57%;相较于SVM方法、CNN方法、RNN方法、BLS-GMM方法,准确率分别提升了4.48%、1.35%、1.62%和0.04%,召回率分别提高了4.48%、1.36%、1.62%和0.14%。 相似文献
9.
10.
胸片中的肺气肿检测算法在临床辅助诊断中具有重要研究意义.针对已有算法缺乏特征通道筛选能力,特征图感受野较小易受局部组织噪声干扰,以及难易样本不均衡等问题,提出了一种基于通道注意力与空洞卷积的胸片肺气肿检测算法EDACD.首先,利用通道注意力模块构建了具有通道选择能力的特征提取网络SE-ResNet及特征金子塔网络SE-... 相似文献
11.
针对现有的虚假评论检测方法未充分利用虚假评论文本特征这一问题,本文提出一种基于多层注意力机制的卷积神经网络模型.首先,使用多种预训练词向量初始化词嵌入层,并进行复值位置编码;然后,将经过多种卷积核卷积得到的多种特征映射依次通过嵌入用户特征的通道级和卷积核级的注意力层,根据特征重要程度分配不同权重;最后,将拟合的评论文本特征表示进行Softmax分类.实验结果表明,与诸多主流优秀神经网络模型相比,本文模型准确率和F,值分别提高4.74和3.86个百分点. 相似文献
12.
传统机器学习方法在进行机械钻速预测时,受复杂特征提取和人为认知局限性的影响,难以满足现场预测精度要求。基于此,提出一种特征提取和回归预测相结合的机械钻速预测方法。首先,采用箱型图和独热编码对钻井实测数据进行预处理,清除异常数据并将离散特征连续化。其次,应用卷积神经网络(convolutional neural network, CNN)挖掘数据特征,并在网络中引入通道注意力机制(squeeze-and-excitation network, SENet),实现对CNN特征通道重要性程度的合理分配,建立SE-CNN机械钻速预测模型。最后,将SE-CNN模型与CNN模型进行对比分析,结果表明:SE-CNN模型的拟合优度提高了2.1%,平均绝对误差和均方根误差分别降低了1.1%和1.5%。SE-CNN模型具有较高的预测精度,可以用于现场机械钻速预测,为钻井提速提供科学参考。 相似文献
13.
近年来,大多数火灾自动报警系统都是通过检测感温、感烟和感光等传感器的方法进行检测,只能针对单一特征信息进行判断识别,受到外界空间、环境或人为因素的影响.卷积神经网络(CNN)以其高准确率的识别率在广泛应用成为一个活跃的研究课题.然而如何可靠、有效地解决火焰检测问题仍然是实践中一个具有挑战性的问题.本文提出了一种新的基于... 相似文献
14.
15.
卷积神经网络算法已广泛运用在图像识别的领域中,基于深度学习的森林火灾检测也逐渐兴起,传统的卷积神经网络算法存在计算速度慢、噪声影响大、传统全连接权重多等问题.本文将使用更好的优化器来提高计算速度,并通过调整模型权重的方式来获得更好的识别效果. 相似文献
16.
为了获取老年人的精神状态从而更全面地了解老年人的身体状况,提出了基于多通道卷积注意力机制的精神状态识别方法。首先,对多种生理信号进行数据预处理,将不同采样频率的传感器数据进行重采样操作,保证数据长度一致。其次,根据输入信号的结构特征以及信号的长度设计对应卷积模块,使用4个不同大小的一维卷积核同时对信号进行特征提取,以增强模型的特征提取能力。再次,将卷积结果进行拼接,对拼接结果进行最大池化操作增加模型的感受野,在提取局部特征信号的同时实现信号间的长距离特征表达。最后,实验结果表明,总体分类准确率为99.75%,所提方法优于对比方法。 相似文献
17.
为了提高视频中行人检测的准确度,提出了一种基于递归卷积神经网络的行人检测方法.该方法利用递归卷积神经网络融合视频中连续图像的上下文信息,以实现准确的行人检测.首先,利用卷积神经网络提取连续图像的多个特征图组;然后,根据先后次序,将多个特征图输入到递归卷积神经网络中,形成一张关于行人位置的掩码图;最后,通过在掩码图上预测... 相似文献
18.
针对在有冗余图像信息干扰下进行人脸有效特征点提取时精度不高的问题,提出了基于级联卷积神经网络的人脸特征点检测算法.在该算法中:输入层读入规则化的原始图像,神经元提取图像的局部特征;池化层进行局部平均和降采样操作,对卷积结果降低维度;卷积层和池化层分布连接,迭代训练,输出特征点检测结果.该算法采用Python语言编程实现... 相似文献
19.
20.
立场检测任务的目的是通过分析用户对特定话题发表的评论以判断其对该话题是支持还是反对的,该任务的关键是捕捉文本信息与其对应话题的相关特征。针对目前已有的微博立场检测模型存在仅考虑文本特征,而未结合话题特征,以及忽略了情感信息对微博立场检测的影响而导致分类效果差的问题,文章提出基于卷积注意力的情感增强微博立场检测模型。该模型通过卷积注意力对文本信息和其对应的话题信息提取特征,同时捕捉其相关特征,然后通过情感增强中词语级情感增强获得带有情感信息的词向量表示,将其与相关特征点相乘得到针对话题的情感增强句向量,其次通过拼接句子级情感增强特征以丰富最终的语义表示,最后对该语义表示进行分类。该模型在NLPCC-2016数据集中取得了较好的结果,相对于目前最优模型在五个话题上分别提高了7.9%、5.8%、5.3%、1.3%和5.2%。 相似文献