首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为了研究离心压缩机系统内无叶扩压器的失速问题,提出了一种三维可压缩模型.采用奇异值分裂(SVD)方法求解离散后的三维可压缩流欧拉方程,得到了无叶扩压器失速时的临界流量系数和失速团相对转速.研究显示,在无叶扩压器较长的情况下,入口马赫数对临界流量系数和失速团相对转速都有重要影响.此外,无叶扩压器临界流量系数还受到无叶扩压器出入口半径比、扩压器入口平均流动的轴向分布以及叶片后弯的影响.实验比较显示,三维模型的预测结果相比二维模型更为准确.  相似文献   

2.
为了研究离心压缩机系统内非平行壁面无叶扩压器的失速问题,提出了一种三维模型.首先采用强隐式方法(SIP)求解扩压器内的平均流动,然后采用奇异值分裂(SVD)方法求解离散后的线性化三维欧拉方程,得到了非平行壁面无叶扩压器失速时的临界流量系数和失速团相对转速.研究的非平行壁面轮盖型线包括单收缩型、先收缩后扩张型以及等面积收缩型.结果显示,无叶扩压器的轮盖型对临界流量系数和失速团相对转速都有重要影响,收缩型轮盖面可以有效抑制无叶扩压器失稳,对于较长的扩压器抑制效果更为明显.此外,非平行壁面无叶扩压器的失速临界流量系数还受到入口马赫数、扩压器出入口半径比的影响.  相似文献   

3.
在一台低速轴流压气机实验台上测量压气机失速时转子前三维流场,测量范围从转子向前延伸到8倍弦长(或0.6倍机匣内径)上游,目的是考察整个失速流场结构,为研究失速团的保持和旋转机理提供丰富的数据支持.通过对壁面动态压力信号分析可知,该压气机失速过程中存在一个失速团,转速为转子转速的37.7%.使用新研制的全流向旋转五孔压力探针测量整个转子前三维速度场和压力场.从结果的S1流面内看,失速团内流动大体上分为正流区、偏转区、回流区和强剪切区.转子前缘附近的流体在30%叶高以上存在回流,并且存在较大的径向和周向旋转速度,其中叶尖附近失速团内流体的周向旋转速度明显大于前方来流速度.在靠近机匣壁面处,回流区一直延伸到转子上游的5.5倍弦长(或40%机匣内径)处.  相似文献   

4.
采用二维方法,预先给定扩压器入口的射流-尾迹分布,忽略边界层的影响,对一具有大宽度无叶扩压器进行了数值模拟;分析了扩压器长度、叶轮叶片数目等因素对失速的影响.计算结果表明:对于宽度不同的扩压器存在不同的失速机理,相关结论和文献结果的比较也证实了该方法的正确性.  相似文献   

5.
无叶扩压器中恒定流的损失预测   总被引:2,自引:0,他引:2  
本文分析了离心式压缩机无叶扩压器内流扬的特征,并建立了其内部流动的数学物理模型.认为沿无叶扩压器流道中分面具有非对称的粘性流动性质.在非径向流动时,其两侧壁上的边界层产生扭曲,并有一个从进口起始段到下游充分发展段的变化过程.文中着重对无叶扩压器的流动损失规律作了一些探讨,采用了内层变量表示的速度壁面律,以便计及边界层内部温度和径向压力梯度对速度分布和壁面摩擦系数的影响,从而提供了一种预测无叶扩压器性能的新方法.经不同进口条件下的实验验证,证明本文提出的性能预测方法是可行的,可以应用于粘性可压缩非对称流,也可以求解径向流和沿无叶扩压器中分面对称的流动.  相似文献   

6.
在叶轮失速流场中,由于小流量工况下回流而导致部分通道阻塞,单通道计算无法真实反映失速发生过程,因此为了识别离心叶轮失速信号,首先采用数值方法对Eckardt离心叶轮设计工况和失速工况实施全通道非定常流场计算.对比分析设计工况和失速工况三维流场流动涡分布,离心叶轮由于径向折转和叶片扭转,在设计工况下就存在低速二次涡,而失速工况下在入口存在4个对称分布的通道涡,造成叶轮阻塞并导致失速.进一步采用空间傅里叶分析方法对不同叶高、不同流向位置周向压力信号进行定量分析,结果表明:(1)设计工况下流道中仅存在受叶片通过影响的20阶扰动,而失速工况下4阶扰动振幅最大,并存在振幅逐渐减小的倍数阶扰动,即此时叶轮中存在4个失速团;(2)引起叶轮失速的流动涡首先出现在入口近叶顶区域,导致叶轮入口阻塞,并逐渐发生涡脱落、破碎进而形成新的流动涡,并向流道下游移动;(3)通过对振幅最大的4阶扰动相位变化分析,得到失速团周向运动速度约为0.62~0.73倍叶轮转速.最后通过与不同流向位置静压信号时间傅里叶分析结果对比,确定空间傅里叶分析能准确识别叶轮中失速团个数及周向传播速度,可有效应用于失速信号识别和进一步对叶轮流场失速信号的实时监测、主动控制和优化设计.  相似文献   

7.
离心压气机无叶扩压器内部流动的实验测量和数值分析   总被引:5,自引:0,他引:5  
对离心压气机无叶扩压器内部的流动进行地测量,实验在6种不同转速下进行,获得了径向速度、周向速度和静压恢复系数的分布规律,用SIMPLEC算法结合k-ε湍流模型对该无叶扩压器内部流动进行了数值模拟,计算结果与实验值基本吻合,结果表明:气流速度沿扩奢器宽度方向的分布是盘侧高一增侧,速度分布逐渐达到均匀,当提高转速时,气流速度沿扩压器宽度方向的变化较小,压力恢复系数在无叶扩压器前段增长较快,在后段增长缓和。  相似文献   

8.
进口导叶与叶片扩压器匹配的实验研究   总被引:1,自引:0,他引:1  
对扩压器进口不同安装角和进口导叶不同预旋角匹配下离心压缩机的性能进行了实验研究.研究表明:扩压器进口安装角最小值为7°时,压缩机性能对进口导叶预旋角不敏感;采用不同的扩压器进口安装角和不同进口导叶预旋角匹配调节时,压缩机所能达到的最高效率为86.0%,比单独调节进口导叶预旋角或扩压器进口安装角所能达到的效率高2%.效率提高的潜能可通过自由选择匹配的方式来加以实现.  相似文献   

9.
离心式叶轮机械的叶轮通道内的流体流动受到旋转效应与曲率影响而产生强烈的二次流现象.二次流是叶轮通道内流动损失的一个原因,对离心叶轮机械的性能产生不利的影响.应用开源CFD软件OpenFOAM对旋转情况下的90°弯曲通道内的不可压缩流体流场进行三维黏性数值模拟.研究了弯曲通道在不同转速下哥氏力与离心力共同作用对主流速度、二次流及压力特性的影响规律.结果表明:与静止通道相比,旋转产生的哥氏力在弯曲管段形成不对称的二次流,使通道内涡结构变得复杂;甚至在较高转速下二次流方向发生反向.  相似文献   

10.
无叶扩压器内流场的热线测量   总被引:1,自引:1,他引:0  
采用单斜丝和单直丝热线相结合多方位采样测量技术,在三种不同转速条件下,使用智能型恒温热线风速仪,对一小型离心式压缩机无叶扩压器内流场进行了测量.给出了三种转速时的时均速度、气流方向角和静压恢复系数的测量结果,并对测量结果进行了分析和讨论  相似文献   

11.
提出了一种计算无叶扩压器两壁面上不可压缩三元紊流附面层的方法。分析中假设径向速度剖面为二阶梯形,且附面层内的速度分布采用能明显表示主流流线偏转角影响的Johns ton的三角形模型。将附面层的动量积分方程与主流的关系式联立起来求解。计算出的无叶扩压器的气动特性与作者的试验结果吻合良好。  相似文献   

12.
本文通过对径流式压气机无叶扩压器中气体一元可压缩流动的分析与研究,求解以损失模型为目标泛函和气体运动所满足的微分方程组为约束条件的最优化控制命题,使目标泛函达到极小。通过分析无叶扩压器出口半径对等熵效率的影响,在给定出口半径的变化范围内进一步选择最优出口半径,使扩压器在最优出口半径时,损失最小且等熵效率达到最高。文中还分析了各几何参数对无叶扩压器效率的影响,从而提出旋转扩压器的设想及理论依据。  相似文献   

13.
为了研究轴流旋风分离器的性能,主要分析2.5~6m/s风速下叶片间距、旋转角度及排尘间隙对旋风分离器阻力和切向速度的影响.结果表明:旋风分离器的阻力随风速的增大而增大;叶片旋转角度对旋风阻力影响不大,但旋转角度的增加可增大最大切向速度;叶片间距变化对阻力和切向速度的影响很大,在6m/s风速下,叶片间距12mm较16mm时阻力增加31.1%,切向速度增大11%;排尘间隙变大可明显增大阻力,对切向速度影响较小.叶片间距为16mm,叶片旋转圆周角为90°,排尘间隙为7.15mm的旋风分离器对A4粗灰的分离效率可达85%以上.本研究结果为轴流旋风分离器几何参数设计提供了依据.  相似文献   

14.
进口导流叶排角度对轴流压气机总压畸变的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
对某三级轴流压气机,利用三维欧拉方程建立模型,采用体积力法进行计算仿真。研究分析IGV(进口导流叶排)对压气机进气畸变的影响,以及设计转速状态下改善畸变效果最好的IGV角度。计算结果表明:IGV可以有效改善流场品质,使压气机各截面的畸变参数都有所减小,例如三级转子进口的畸变角度降低了21.4%,畸变强度降低了10.2%;IGV起到了很好的整流作用,表现出了显著的减小畸变程度的能力;随着IGV角度的增加,畸变强度随之降低,当IGV角度达到临界值后畸变强度反而开始增大;设计转速下,IGV临界角度为45°左右,在此角度下改善畸变的效果最好。  相似文献   

15.
针对旋转液膜反应器的不同倾斜角和不同夹缝宽度下的临界流量进行了数值模拟。结果表明,对给定的转速,临界流量与倾斜角之间大致呈二次抛物的关系,并且存在临界角使得反应器的临界流量达到最大;当转速增大时,相应的临界角会递减,并最终趋于一个稳定值;当夹缝宽度变小时,这个稳定值几乎不变。  相似文献   

16.
使用智能型恒温热线风速仪,在离心式压缩机叶轮以某一转速旋转和叶轮静止不动静吹风的两种情况下,对离心式压缩机的无叶扩压器内流场进行了测量,并对测量结果进行了讨论和分析  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号