首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D P Domning 《Nature》2001,413(6856):625-627
Modern seacows (manatees and dugongs; Mammalia, Sirenia) are completely aquatic, with flipperlike forelimbs and no hindlimbs. Here I describe Eocene fossils from Jamaica that represent nearly the entire skeleton of a new genus and species of sirenian--the most primitive for which extensive postcranial remains are known. This animal was fully capable of locomotion on land, with four well-developed legs, a multivertebral sacrum, and a strong sacroiliac articulation that could support the weight of the body out of water as in land mammals. Aquatic adaptations show, however, that it probably spent most of its time in the water. Its intermediate form thus illustrates the evolutionary transition between terrestrial and aquatic life. Similar to contemporary primitive cetaceans, it probably swam by spinal extension with simultaneous pelvic paddling, unlike later sirenians and cetaceans, which lost the hindlimbs and enlarged the tail to serve as the main propulsive organ. Together with fossils of later sirenians elsewhere in the world, these new specimens document one of the most marked examples of morphological evolution in the vertebrate fossil record.  相似文献   

2.
Thewissen JG  Williams EM  Roe LJ  Hussain ST 《Nature》2001,413(6853):277-281
Modern members of the mammalian order Cetacea (whales, dolphins and porpoises) are obligate aquatic swimmers that are highly distinctive in morphology, lacking hair and hind limbs, and having flippers, flukes, and a streamlined body. Eocene fossils document much of cetaceans' land-to-water transition, but, until now, the most primitive representative for which a skeleton was known was clearly amphibious and lived in coastal environments. Here we report on the skeletons of two early Eocene pakicetid cetaceans, the fox-sized Ichthyolestes pinfoldi, and the wolf-sized Pakicetus attocki. Their skeletons also elucidate the relationships of cetaceans to other mammals. Morphological cladistic analyses have shown cetaceans to be most closely related to one or more mesonychians, a group of extinct, archaic ungulates, but molecular analyses have indicated that they are the sister group to hippopotamids. Our cladistic analysis indicates that cetaceans are more closely related to artiodactyls than to any mesonychian. Cetaceans are not the sister group to (any) mesonychians, nor to hippopotamids. Our analysis stops short of identifying any particular artiodactyl family as the cetacean sister group and supports monophyly of artiodactyls.  相似文献   

3.
Alemseged Z  Spoor F  Kimbel WH  Bobe R  Geraads D  Reed D  Wynn JG 《Nature》2006,443(7109):296-301
Understanding changes in ontogenetic development is central to the study of human evolution. With the exception of Neanderthals, the growth patterns of fossil hominins have not been studied comprehensively because the fossil record currently lacks specimens that document both cranial and postcranial development at young ontogenetic stages. Here we describe a well-preserved 3.3-million-year-old juvenile partial skeleton of Australopithecus afarensis discovered in the Dikika research area of Ethiopia. The skull of the approximately three-year-old presumed female shows that most features diagnostic of the species are evident even at this early stage of development. The find includes many previously unknown skeletal elements from the Pliocene hominin record, including a hyoid bone that has a typical African ape morphology. The foot and other evidence from the lower limb provide clear evidence for bipedal locomotion, but the gorilla-like scapula and long and curved manual phalanges raise new questions about the importance of arboreal behaviour in the A. afarensis locomotor repertoire.  相似文献   

4.
Ahlberg PE  Clack JA  Blom H 《Nature》2005,437(7055):137-140
Ichthyostega was the first Devonian tetrapod to be subject to a whole-body reconstruction. It remains, together with Acanthostega, one of only two Devonian tetrapods for which near-complete postcranial material is available. It is thus crucially important for our understanding of the earliest stages of tetrapod evolution and terrestrialization. Here we show a new reconstruction of Ichthyostega based on extensive re-examination of original material and augmented by recently collected specimens. Our reconstruction differs substantially from those previously published and reveals hitherto unrecognized regionalization in the vertebral column. Ichthyostega is the earliest vertebrate to show obvious adaptations for non-swimming locomotion. Uniquely among early tetrapods, the presacral vertebral column shows pronounced regionalization of neural arch morphology, suggesting that it was adapted for dorsoventral rather than lateral flexion.  相似文献   

5.
Pierce SE  Clack JA  Hutchinson JR 《Nature》2012,486(7404):523-526
The origin of tetrapods and the transition from swimming to walking was a pivotal step in the evolution and diversification of terrestrial vertebrates. During this time, modifications of the limbs—particularly the specialization of joints and the structures that guide their motions—fundamentally changed the ways in which early tetrapods could move. Nonetheless, little is known about the functional consequences of limb anatomy in early tetrapods and how that anatomy influenced locomotion capabilities at this very critical stage in vertebrate evolution. Here we present a three-dimensional reconstruction of the iconic Devonian tetrapod Ichthyostega and a quantitative and comparative analysis of limb mobility in this early tetrapod. We show that Ichthyostega could not have employed typical tetrapod locomotory behaviours, such as lateral sequence walking. In particular, it lacked the necessary rotary motions in its limbs to push the body off the ground and move the limbs in an alternating sequence. Given that long-axis rotation was present in the fins of tetrapodomorph fishes, it seems that either early tetrapods evolved through an initial stage of restricted shoulder and hip joint mobility or that Ichthyostega was unique in this respect. We conclude that early tetrapods with the skeletal morphology and limb mobility of Ichthyostega were unlikely to have made some of the recently described Middle Devonian trackways.  相似文献   

6.
The Plio-Pleistocene site of Dmanisi, Georgia, has yielded a rich fossil and archaeological record documenting an early presence of the genus Homo outside Africa. Although the craniomandibular morphology of early Homo is well known as a result of finds from Dmanisi and African localities, data about its postcranial morphology are still relatively scarce. Here we describe newly excavated postcranial material from Dmanisi comprising a partial skeleton of an adolescent individual, associated with skull D2700/D2735, and the remains from three adult individuals. This material shows that the postcranial anatomy of the Dmanisi hominins has a surprising mosaic of primitive and derived features. The primitive features include a small body size, a low encephalization quotient and absence of humeral torsion; the derived features include modern-human-like body proportions and lower limb morphology indicative of the capability for long-distance travel. Thus, the earliest known hominins to have lived outside of Africa in the temperate zones of Eurasia did not yet display the full set of derived skeletal features.  相似文献   

7.
Li W  Feng Z  Sternberg PW  Xu XZ 《Nature》2006,440(7084):684-687
The nematode Caenorhabditis elegans is commonly used as a genetic model organism for dissecting integration of the sensory and motor systems. Despite extensive genetic and behavioural analyses that have led to the identification of many genes and neural circuits involved in regulating C. elegans locomotion behaviour, it remains unclear whether and how somatosensory feedback modulates motor output during locomotion. In particular, no stretch receptors have been identified in C. elegans, raising the issue of whether stretch-receptor-mediated proprioception is used by C. elegans to regulate its locomotion behaviour. Here we have characterized TRP-4, the C. elegans homologue of the mechanosensitive TRPN channel. We show that trp-4 mutant worms bend their body abnormally, exhibiting a body posture distinct from that of wild-type worms during locomotion, suggesting that TRP-4 is involved in stretch-receptor-mediated proprioception. We show that TRP-4 acts in a single neuron, DVA, to mediate its function in proprioception, and that the activity of DVA can be stimulated by body stretch. DVA both positively and negatively modulates locomotion, providing a unique mechanism whereby a single neuron can fine-tune motor activity. Thus, DVA represents a stretch receptor neuron that regulates sensory-motor integration during C. elegans locomotion.  相似文献   

8.
NR Longrich  BA Bhullar  JA Gauthier 《Nature》2012,488(7410):205-208
Snakes are the most diverse group of lizards, but their origins and early evolution remain poorly understood owing to a lack of transitional forms. Several major issues remain outstanding, such as whether snakes originated in a marine or terrestrial environment and how their unique feeding mechanism evolved. The Cretaceous Coniophis precedens was among the first Mesozoic snakes discovered, but until now only an isolated vertebra has been described and it has therefore been overlooked in discussions of snake evolution. Here we report on previously undescribed material from this ancient snake, including the maxilla, dentary and additional vertebrae. Coniophis is not an anilioid as previously thought a revised phylogenetic analysis of Ophidia shows that it instead represents the most primitive known snake. Accordingly, its morphology and ecology are critical to understanding snake evolution. Coniophis occurs in a continental floodplain environment, consistent with a terrestrial rather than a marine origin; furthermore, its small size and reduced neural spines indicate fossorial habits, suggesting that snakes evolved from burrowing lizards. The skull is intermediate between that of lizards and snakes. Hooked teeth and an intramandibular joint indicate that Coniophis fed on relatively large, soft-bodied prey. However, the maxilla is firmly united with the skull, indicating an akinetic rostrum. Coniophis therefore represents a transitional snake, combining a snake-like body and a lizard-like head. Subsequent to the evolution of a serpentine body and carnivory, snakes evolved a highly specialized, kinetic skull, which was followed by a major adaptive radiation in the Early Cretaceous period. This pattern suggests that the kinetic skull was a key innovation that permitted the diversification of snakes.  相似文献   

9.
Lyamin O  Pryaslova J  Lance V  Siegel J 《Nature》2005,435(7046):1177
All mammals previously studied take maximal rest or sleep after birth, with the amount gradually decreasing as they grow to adulthood, and adult fruitflies and rats die if they are forcibly deprived of sleep. It has therefore been assumed that sleep is necessary for development and serves a vital function in adults. But we show here that, unlike terrestrial mammals, killer-whale and bottlenose-dolphin neonates and their mothers show little or no typical sleep behaviour for the first postpartum month, avoiding obstacles and remaining mobile for 24 hours a day. We find that neonates and their mothers gradually increase the amount of time they spend resting to normal adult levels over a period of several months, but never exceed these levels. Our findings indicate either that sleep behaviour may not have the developmental and life-sustaining functions attributed to it, or that alternative mechanisms may have evolved in cetaceans.  相似文献   

10.
Clark JM  Xu X  Forster CA  Wang Y 《Nature》2004,430(7003):1021-1024
The skull of living crocodylians is highly solidified and the jaw closing muscles are enlarged, allowing for prey capture by prolonged crushing between the jaws. Living species are all semi-aquatic, with sprawling limbs and a broad body that moves mainly from side-to-side; however, fossils indicate that they evolved from terrestrial forms. The most cursorial of these fossils are small, gracile forms often grouped together as the Sphenosuchia, with fully erect, slender limbs; their relationships, however, are poorly understood. A new crocodylomorph from deposits in northwestern China of the poorly known Middle Jurassic epoch possesses a skull with several adaptations typical of living crocodylians. Postcranially it is similar to sphenosuchians but with even greater adaptations for cursoriality in the forelimb. Here we show, through phylogenetic analysis, that it is the closest relative of the large group Crocodyliformes, including living crocodylians. Thus, important features of the modern crocodylian skull evolved during a phase when the postcranial skeleton was evolving towards greater cursoriality, rather than towards their current semi-aquatic habitus.  相似文献   

11.
Clack JA 《Nature》2002,418(6893):72-76
The fossil record of early tetrapods has been increased recently by new finds from the Devonian period and mid-late Early Carboniferous period. Despite this, understanding of tetrapod evolution has been hampered by a 20-million-year gap ('Romer's Gap') that covers the crucial, early period when many key features of terrestrial tetrapods were acquired. Here I describe the only articulated skeleton of a tetrapod, Pederpes, yet found from the Tournaisian epoch (354-344 million years ago (Myr)). The new taxon includes a pes with five robust digits, but a very small, possibly supernumerary digit preserved on the manus suggests the presence of polydactyly. Polydactylous early tetrapods may have survived beyond the end of the Devonian and pentadactyly cannot be assumed for the pes. However, the pes has characteristics that distinguish it from the paddle-like feet of the Devonian forms and resembles the feet of later, more terrestrially adapted Carboniferous forms. Pederpes is the earliest-known tetrapod to show the beginnings of terrestrial locomotion and was at least functionally pentadactyl. With its later American sister-genus, Whatcheeria, it represents the next most primitive tetrapod clade after those of the Late Devonian, bridging the temporal, morphological and phylogenetic gaps that have hitherto separated Late Devonian and mid-Carboniferous tetrapod faunas.  相似文献   

12.
A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton   总被引:16,自引:0,他引:16  
Ji Q  Luo ZX  Ji SA  Luo Z 《Nature》1999,398(6725):326-330
Here we describe a new triconodont mammal from the Late Jurassic/Early Cretaceous period of Liaoning, China. This new mammal is represented by the best-preserved skeleton known so far for triconodonts which form one of the earliest Mesozoic mammalian groups with high diversity. The postcranial skeleton of this new triconodont shows a mosaic of characters, including a primitive pelvic girdle and hindlimb but a very derived pectoral girdle that is closely comparable to those of derived therians. Given the basal position of this taxon in mammalian phylogeny, its derived pectoral girdle indicates that homoplasies (similarities resulting from independent evolution among unrelated lineages) are as common in the postcranial skeleton as they are in the skull and dentition in the evolution of Mesozoic mammals. Limb structures of the new triconodont indicate that it was probably a ground-dwelling animal.  相似文献   

13.
利用分数阶微积分的基本理论,建立了描述半规管运动的广义分数阶黏弹性模型,研究了系统的动力学响应以及频率特性。证明了内淋巴液对于半规管系统的整体动力学特性具有决定作用,而壶腹嵴则对于系统的最终稳态分布起决定作用.  相似文献   

14.
Simmons NB  Seymour KL  Habersetzer J  Gunnell GF 《Nature》2008,451(7180):818-821
Bats (Chiroptera) represent one of the largest and most diverse radiations of mammals, accounting for one-fifth of extant species. Although recent studies unambiguously support bat monophyly and consensus is rapidly emerging about evolutionary relationships among extant lineages, the fossil record of bats extends over 50 million years, and early evolution of the group remains poorly understood. Here we describe a new bat from the Early Eocene Green River Formation of Wyoming, USA, with features that are more primitive than seen in any previously known bat. The evolutionary pathways that led to flapping flight and echolocation in bats have been in dispute, and until now fossils have been of limited use in documenting transitions involved in this marked change in lifestyle. Phylogenetically informed comparisons of the new taxon with other bats and non-flying mammals reveal that critical morphological and functional changes evolved incrementally. Forelimb anatomy indicates that the new bat was capable of powered flight like other Eocene bats, but ear morphology suggests that it lacked their echolocation abilities, supporting a 'flight first' hypothesis for chiropteran evolution. The shape of the wings suggests that an undulating gliding-fluttering flight style may be primitive for bats, and the presence of a long calcar indicates that a broad tail membrane evolved early in Chiroptera, probably functioning as an additional airfoil rather than as a prey-capture device. Limb proportions and retention of claws on all digits indicate that the new bat may have been an agile climber that employed quadrupedal locomotion and under-branch hanging behaviour.  相似文献   

15.
Convergent evolution in mechanical design of lamnid sharks and tunas   总被引:1,自引:0,他引:1  
The evolution of 'thunniform' body shapes in several different groups of vertebrates, including whales, ichthyosaurs and several species of large pelagic fishes supports the view that physical and hydromechanical demands provided important selection pressures to optimize body design for locomotion during vertebrate evolution. Recognition of morphological similarities between lamnid sharks (the most well known being the great white and the mako) and tunas has led to a general expectation that they also have converged in their functional design; however, no quantitative data exist on the mechanical performance of the locomotor system in lamnid sharks. Here we examine the swimming kinematics, in vivo muscle dynamics and functional morphology of the force-transmission system in a lamnid shark, and show that the evolutionary convergence in body shape and mechanical design between the distantly related lamnids and tunas is much more than skin deep; it extends to the depths of the myotendinous architecture and the mechanical basis for propulsive movements. We demonstrate that not only have lamnids and tunas converged to a much greater extent than previously known, but they have also developed morphological and functional adaptations in their locomotor systems that are unlike virtually all other fishes.  相似文献   

16.
The vast majority of Mesozoic and early Cenozoic metatherian mammals (extinct relatives of modern marsupials) are known only from partial jaws or isolated teeth, which give insight into their probable diets and phylogenetic relationships but little else. The few skulls known are generally crushed, incomplete or both, and associated postcranial material is extremely rare. Here we report the discovery of an exceptionally large number of almost undistorted, nearly complete skulls and skeletons of a stem-metatherian, Pucadelphys andinus, in the early Palaeocene epoch of Tiupampa in Bolivia. These give an unprecedented glimpse into early metatherian morphology, evolutionary relationships and, especially, ecology. The remains of 35 individuals have been collected, with 22 of these represented by nearly complete skulls and associated postcrania. These individuals were probably buried in a single catastrophic event, and so almost certainly belong to the same population. The preservation of multiple adult, sub-adult and juvenile individuals in close proximity (<1?m(2)) is indicative of gregarious social behaviour or at least a high degree of social tolerance and frequent interaction. Such behaviour is unknown in living didelphids, which are highly solitary and have been regarded, perhaps wrongly, as the most generalized living marsupials. The Tiupampan P.?andinus population also exhibits strong sexual dimorphism, which, in combination with gregariousness, suggests strong male-male competition and polygyny. Our study shows that social interactions occurred in metatherians as early as the basal Palaeocene and that solitary behaviour may not be plesiomorphic for Metatheria as a whole.  相似文献   

17.
New partial skeleton of Homo habilis from Olduvai Gorge, Tanzania   总被引:1,自引:0,他引:1  
A new partial skeleton of an adult hominid from lower Bed I (about 1.8 Myr ago), Olduvai Gorge, is described. This specimen's craniodental anatomy indicates attribution to Homo habilis, but its postcranial anatomy, including small body size and relatively long arms, is strikingly similar to that of some early Australopithecus individuals.  相似文献   

18.
Thewissen JG  Cooper LN  Clementz MT  Bajpai S  Tiwari BN 《Nature》2007,450(7173):1190-1194
Although the first ten million years of whale evolution are documented by a remarkable series of fossil skeletons, the link to the ancestor of cetaceans has been missing. It was known that whales are related to even-toed ungulates (artiodactyls), but until now no artiodactyls were morphologically close to early whales. Here we show that the Eocene south Asian raoellid artiodactyls are the sister group to whales. The raoellid Indohyus is similar to whales, and unlike other artiodactyls, in the structure of its ears and premolars, in the density of its limb bones and in the stable-oxygen-isotope composition of its teeth. We also show that a major dietary change occurred during the transition from artiodactyls to whales and that raoellids were aquatic waders. This indicates that aquatic life in this lineage occurred before the origin of the order Cetacea.  相似文献   

19.
Remains of Homo erectus from Bouri, Middle Awash, Ethiopia   总被引:5,自引:0,他引:5  
The genesis, evolution and fate of Homo erectus have been explored palaeontologically since the taxon's recognition in the late nineteenth century. Current debate is focused on whether early representatives from Kenya and Georgia should be classified as a separate ancestral species ('H. ergaster'), and whether H. erectus was an exclusively Asian species lineage that went extinct. Lack of resolution of these issues has obscured the place of H. erectus in human evolution. A hominid calvaria and postcranial remains recently recovered from the Dakanihylo Member of the Bouri Formation, Middle Awash, Ethiopia, bear directly on these issues. These approximately 1.0-million-year (Myr)-old Pleistocene sediments contain abundant early Acheulean stone tools and a diverse vertebrate fauna that indicates a predominantly savannah environment. Here we report that the 'Daka' calvaria's metric and morphological attributes centre it firmly within H. erectus. Daka's resemblance to Asian counterparts indicates that the early African and Eurasian fossil hominids represent demes of a widespread palaeospecies. Daka's anatomical intermediacy between earlier and later African fossils provides evidence of evolutionary change. Its temporal and geographic position indicates that African H. erectus was the ancestor of Homo sapiens.  相似文献   

20.
Host-plant adaptation drives the parallel evolution of reproductive isolation   总被引:12,自引:0,他引:12  
Nosil P  Crespi BJ  Sandoval CP 《Nature》2002,417(6887):440-443
Parallel evolution of similar traits in independent populations that inhabit ecologically similar environments strongly implicates natural selection as the cause of evolution. Parallel speciation is a special form of parallel evolution where traits that determine reproductive isolation evolve repeatedly, in closely related populations, as by-products of adaptation to ecological conditions. The outcome of such parallel evolution is that ecologically divergent pairs of populations exhibit greater levels of reproductive isolation than ecologically similar pairs of populations of a similar or younger age. The parallel evolution of reproductive isolation provides strong evidence for natural selection in the process of speciation, but only one conclusive example from nature is known. Populations of the walking-stick insect Timema cristinae that use different host-plant species have diverged in body size and shape, host preference, behaviour and the relative frequency of two highly cryptic colour-pattern morphs. Here we report that divergent selection for host adaptation, and not genetic drift, has promoted the parallel evolution of sexual isolation in this species. Our findings represent a clear demonstration that host-plant adaptation can play a crucial and repeatable role in the early stages of speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号