首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high pressure pelitic granulite with peak assemblage of garnet kyanite ternary feldspar muscovite rutile was discovered in Qixia area in the Precambrian Jiaobei massif, where high pressure basic granulites are widely distributed. The metamorphic peak conditions for the pelitic granulite were calculated as T=800-840℃ and P=1.0-1.25 GPa on the basis of P-T pseudosection. The post peak P-T path is characterized first by an isothermal decompression (ITD) pattern and then by an isobaric cooling (IBC) pattern, indicating a geodynamic process related to thinning of thickened continental crust.  相似文献   

2.
The thermal structure of the crust strongly influences deformation, metamorphism and plutonism. Models for the geothermal gradient in stable crust predict a steady increase of temperature with depth. This thermal structure, however, is incompatible with observations from high-temperature metamorphic terranes exhumed in orogens. Global compilations of peak conditions in high-temperature metamorphic terranes define relatively narrow ranges of peak temperatures over a wide range in pressure, for both isothermal decompression and isobaric cooling paths. Here we develop simple one-dimensional thermal models that include the effects of melt migration. These models show that long-lived plutonism results in a quasi-steady-state geotherm with a rapid temperature increase in the upper crust and nearly isothermal conditions in the middle and lower crust. The models also predict that the upward advection of heat by melt generates granulite facies metamorphism, and widespread andalusite-sillimanite metamorphism in the upper crust. Once the quasi-steady-state thermal profile is reached, the middle and lower crust are greatly weakened due to high temperatures and anatectic conditions, thus setting the stage for gravitational collapse, exhumation and isothermal decompression after the onset of plutonism. Near-isothermal conditions in the middle and lower crust result from the thermal buffering effect of dehydration melting reactions that, in part, control the shape of the geotherm.  相似文献   

3.
The Yunmengshan metamorphic core complex in the middle part of the Yanshan Fold and Thrust Belt records crust extension processes of the eastern North China Craton during its peak destruction.Development of the metamorphic core complex was controlled by the generally NNE-striking Dashuiyu Shear Zone.The shear zone dips SE and becomes shallower NE-wards,leading to exposures of a ductile shear zone in the southern and middle parts and brittle faults in the northern part.Exposure structures,microstructures,and quartz C-axis fabrics indicate that the ductile shear zone belongs to an extensional shear zone with a top-to-the-SE shear sense.Deformation temperatures of 300–520°C suggest a midcrustal origin for the ductile shear zone.A ductile deformation belt in the footwall of the shear zone is only as wide as 1–3 km,indicating no widespread mid-crustal ductile flow in the region during the deformation.Zircon U–Pb dating of dykes and plutons as well as hornblende and biotite40Ar/39Ar dating demonstrate that the metamorphic core complex originated at 135 Ma and experienced intense shearing of the Dashuiyu Shear Zone,development of the supradetachment basins,and synkinematic intrusion during 135–125 Ma.The metamorphic core complex was subjected to rapid exhumation during 125–114 Ma when the Dashuiyu Shear Zone suffered continuous activity and passive doming.The shear zone and its hanging wall were cut or replaced by a series of brittle faults when they wereuplifted to a brittle regime,showing that exhumation took place in continuous extensional activities.The metamorphic core complex turned into slow exhumation in an extensional regime in the following latest Early Cretaceous.The evolution history suggests that the Yunmengshan metamorphic core complex was developed by the rolling-hinge model,a common formation mechanism for intraplate metamorphic core complexes in the North China Craton,under the continuous NW–SE extension during the Early Cretaceous(135–100 Ma).  相似文献   

4.
The geological characteristics of ultrahigh-pressure (UHP) metamorphic belts formed by deep subduction of oceanic crust are summarized in this paper. Oceanic-type UHP metamorphic belt is characterized by its protolithlc assemblage of typical oceanic crust, the peak metamorphic temperature 〈600℃, P-T path undergoing blueschist facies during prograde and retrograde metamorphic evolution, reepectively, with low geothermal gradient of cold subduction. The further study of oceanic-type UHP metamorphic belt is very significant for constructing metamorphic reaction series of cold subduction zone, for understanding how aqueous fluids were transported into deep mantle and for classifying the types of UHP metamorphism in cold subduction zone. The uplift and exhumation mechanism of oceanic UHP metamorphic rocks is one of the most challenging problems in the study of UHP metamorphism, which is very important for understanding the geodynamic mechanism of solid Earth. As a traveler eubducted into the mantle depth end then uplifted to the surface, oceanic-type UHP metamorphic belts witness the bulk process from the subduction to exhumation and is an ideal target to study the geochemical behavior end cycling of elements in subduction zones. The tectonic evolution of one convergent orogenic belt can be usually divided into two stages of oceanic subduction and followed continental subduction and collision, and the two best-established examples of orogenic belts are Alpa and Himalaya. Therefore, the study of oceanic-type UHP metamorphic belt is the frontier of the current plate tectonic theory. As two case studies, the current status and existing problems of oceanic-type UHP metamorphic belts in Southwest Tianshan and North Qaidam, NW China, are reviewed in this paper.  相似文献   

5.
Recent progress in the study of the UHP metamorphic belt in southwestern Tianshan, China, is summarized in this paper. This about 80-kin-long and over 10-km-wide UHP belt has been recognized by the discovery of coesite, coesite pseudomorphs and other UHP minerals. It is the largest oceanic-type UHP metamorphic belt reported so far. It has formed due to northward subduc- tion of the Tianshan Paleo-Ocean. U-Pb dating of metamorphic rims of zircons from a coesite-bearing garnet-phengite schist yields a peak UHP metamorphic ages of 320±3.7 Ma. Combined with ages of 233-226 Ma obtained from rims of zircons from retrograded eclogites, a long retrograde metamorphic evolution (〉70 Ma) has been revealed. According to phase equilibria mod- eling, the P-T paths of both coesite-bearing eclogites and garnet-phengite schists are characterized by thermal relaxation, i.e., the metamorphic temperature peak lags behind the pressure peak, indicating that the UHP rocks experienced slow and long heating and decompression during exhumation in the subduction channel. On the basis of the field observation that a small amount of eclogite lenses is wrapped in large volumes of metapelites, and the similar P-T paths of both rock types, we propose that the ex- humation of the UHP eclogites from southwestern Tianshan, China, may have resulted from the exhumation of large volumes of low-density metapelites, which carried the denser eclogites to the Earth's surface.  相似文献   

6.
The existence of pelitic granulite in the Altai orogen was confirmed for the first time by detailed petrographic research and P-Tpseudosection modeling. The pelitic granulite has the assemblage of garnet + cordierite + K-feldspar + biotite + sillimanite + plagioclase + quartz with some samples containing the paragenesis of cordierite + spinel. Peak conditions of the pelitic granuUte determined from the P-T pseudosection involved P = 0.5-0.6 GPa, T= 780-800℃ belonging to medium- to low-pressure type. SHRIMP U-Pb dating of zircon presented a metamorphic age of 292.8 ± 2.3 Ma. The discovery of pelitic granulite reflects an extensional environment with high heat flow in the southern margin of the Altai orogen during the Early Permian, which provides an important petrological constraint on the evolution of the Altai orogen.  相似文献   

7.
Two metamorphic processes, i.e. subsolidus dehydration and partial melting occurring in MORB, metasediments and peridotite of subducted oceanic lithosphere are discussed on the basis of available experimental work and phase equilibrium modeling. Phase diagrams of hydrous MORB show that in most cold subduction P-T (pressure-temperature) regimes a large portion of water in the basic layer has released below the onset of blueschist facies (〈 20 km), and at a depth (60--70 km) of transition from lawsonite blueschist to lawsonite eclogite facies through glaucophane dehydration; only a smaller portion of water will escape from the slab through dehydration of lawsonite and chloritoid in the depth range suitable for arc magma formation; and a very small portion of water stored in lawsonite and phengite will fade into the deeper mantle. The role of amphibole for arc magma formation is still arguable. In cold subduction P-Tregimes, the dehydration of chlorite and talc in AI-poor metasediments, and chloritoid and carpholite in AI-rich metapelites at a depth around 80--100 km will make some con- tributions to the formation of arc magma. Comparatively, dehydration of serpentine in hydrated peri- dotite occurs at depths of 120--180 km, playing an important role in the arc magmatism. Subduction of oceanic crust along warm P-T regimes will cross the solidi at a depth over 80 km, resulting in partial melting under fluid-saturated and fluid-absent conditions in the metasediments involving biotite and phengite, and in the basic rocks involving epidote and amphibole. The melt compositions of the basic crust are adakitic at pressures 〈 3.0 GPa, but become peraluminous granitic at higher pressures.  相似文献   

8.
The eclogites from the Altyn Tagh, northwestern China have been subjected to mediumtemperature and high-pressure metamorphism, and then overprinted by the amphibolite to granulite facies retrograde metamorphism. A complex compositional zoning was well preserved in the garnet porphyroblast formed during the metamorphism of eclogite facies. This zoning recordedP-T path of multistage metamorphism, and an early retrogressive process with features of decreasing pressure and increasing temperature. This evidences a short residence time for the eclogite at peak metamorphism and early retrogression, and thus rapid tectonic uplift history.  相似文献   

9.
辽南万福变质核杂岩韧性剪切带为一走向近SN,倾向NE的低角度韧性剪切带,带内的主要岩石类型为花岗质糜棱岩。以长石为应变标志体的Rf/φ应变测量显示应变类型为压扁应变;以极莫尔圆与长短轴法的运动学涡度估算表面,剪切带的剪切作用类型为以简单剪切为主的一般剪切。结合区域构造演化与年代学资料,认为辽南万福变质核杂岩韧性剪切带形成于加厚地壳造山后垮塌,且在早白垩纪华北克拉通大规模地壳伸展的联合作用下由地壳的中、深层次被抬升至地表,并与各时代的岩石在同一露头上并置而成。  相似文献   

10.
HighP-T experiment with natural massive rock sample of garnet biotite plagioclase gneiss indicates that the metamorphic reaction involving melt (reaction between relic mineral phase and melt) is the most important reaction in granulite-facies metamorphism and accompanies anatexis process.  相似文献   

11.
Abers GA  Ferris A  Craig M  Davies H  Lerner-Lam AL  Mutter JC  Taylor B 《Nature》2002,418(6900):862-865
In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and underlying mantle respond. Also, despite removal of the upper crust, such core complexes remain both topographically high and in isostatic equilibrium. Because many core complexes in the western United States are underlain by a flat Moho discontinuity, it has been widely assumed that their elevation is supported by flow in the lower crust or by magmatic underplating. These processes should decouple upper-crust extension from that in the mantle. In contrast, here we present seismic observations of metamorphic core complexes of the western Woodlark rift that show the overall crust to be thinned beneath regions of greatest surface extension. These core complexes are actively being exhumed at a rate of 5-10 km Myr(-1), and the thinning of the underlying crust appears to be compensated by mantle rocks of anomalously low density, as indicated by low seismic velocities. We conclude that, at least in this case, the development of metamorphic core complexes and the accommodation of high extension is not purely a crustal phenomenon, but must involve mantle extension.  相似文献   

12.
变质核杂岩特征及小秦岭地区变质杂岩成因讨论   总被引:1,自引:0,他引:1  
目的为确定小秦岭地区发育的变质杂岩体是否属于变质核杂岩。方法总结前人归纳的变质核杂岩特征,与小秦岭地区发育的太华杂岩特征进行对比,再通过对小秦岭地区燕山期后褶皱、南北两侧发育的断裂进行分析和构造演化史研究。结果小秦岭地区的构造特征与变质核杂岩特征不符。结论小秦岭地区的太华杂岩解释为经历了从南向北的铲状逆冲推覆和后期抬升块断剥露的变质杂岩更为合理。  相似文献   

13.
Through petrography, mineral compositions and P-T estimate results, an ultrahigh-temperature(UHT) metapelitic granulite has recently been identified from near Kalasu in the east of Altay city, with an assemblage gt-opx-silcd-sp-bt-pl-qtz. The orthopyroxene has a high-Al feature, and its Al2O3 content is as high as 8.7 wt%, indicating a UHT metamorphic condition. Its peak metamorphic condition is estimated as: P = *0.80 GPa, T = *960 °C. Metamorphic textural relations and P-T estimate results show a post-peak near-isobaric cooling anticlockwise P-T path. Zircon U-Pb age results(271 ± 5 Ma) support that the UHT metamorphic event in the region occurred in the Permian. The identification of the UHT metapelitic granulite from near Kalasu confirms the existence of the Permian UHT metamorphism in the Altay orogen, implying that the Permian extensional tectonic setting of a high-heat flow in the southern part of the Altay orogen may be closely associated with the Permian Tarim mantle plume activity.  相似文献   

14.
Conclusions The transition from natural Al-enstatite to garnet and Al-poor pyroxene has taken place under the condition of about 1000°C and 4.5–5.5 GPa, and new phases of garnet and corundum have formed when 15% Al2O3 was added to the initial natural Al-enstatite. This experimental result has explained the ultrahigh pressure (3.5–5.0 GPa) and relatively low temperature (< 1000°C) genesis of the ultramafic rock of high-pressure metamorphic zone in Dabieshan-northern Jiangsu-Jiaodong and of red corundum garnetite coexisting with garnet peridotite. From the genetic mineralogy, petrology andP-T equilibrium conditions of garnet peridotite of the high-pressure metamorphic zone, kimberlite and Cenozoic basalt and the ultrahigh pressure experimental result, it is inferred that the upper mantle garnet peridotite is transformed with the increase of depth from Al-rich pyroxene garnet peridotite (80–120 km) to Al-poor pyroxene garnet peridotite (greater than 120–150 km).  相似文献   

15.
Systematical studies of post-collisional igneous rocks in the Dabie orogen suggest that the thickened mafic lower crust of the oro- gen was partially melted to form low-Mg# adakitic rocks at 143-131 Ma. Delamination and foundering of the thickened mafic lower crust occurred at 130 Ma, which caused the mantle upwelling and following mafic and granitic magmatic intrusions. Mig- matite in the North Dabie zone, coeval with the formation of low-Mg# adakitic intrusions in the Dabie orogen, was formed by partial melting of exhumed ultrahigh-pressure metamorphic rocks at middle crustal level. This paper argues that the partial melting of thickened lower and middle crust before mountain-root collapse needs lithospheric thinning. Based on the geothermal gradient of 6.6~C/km for lithospheric mantle and initial partial melting temperature of ~1000~C for the lower mafic crust, it can be estimated that the thickness of lithospheric mantle beneath thickened lower crust has been thinned to 〈45 km when the thickened lower crust was melting. Thus, a two-stage model for mountain-root removal is proposed. First, the lithospheric mantle keel was partially removal by mantle convection at 145 Ma. Loss of the lower lithosphere would increase heat flow into the base of the crust and would cause middle-lower crustal melting. Second, partial melting of the thickened lower crust has weakened the lower crust and increased its gravity instability, thus triggering delamination and foundering of the thickened mafic lower crust or mountain-root collapse. Therefore, convective removal and delamination of the thickened lower crust as two mechanisms of lithospheric thin- ning are related to causality.  相似文献   

16.
Although tectonic models were presented for exhumation of ultrahigh-pressure (UHP) metamorphic rocks during the continental collision, there is increasing evidence for the decoupling between crustal slices at various depths within deeply subducted continental crust. This lends support to the multi-slice successive exhumation model of the UHP metamorphic rocks in the Dabie-Sulu orogen. The available evidence is summarized as follows: (1) the low-grade metamorphic slices, which have geotectonic affinity to the South China Block and part of them records the Triassic metamorphism, occur in the northern margin of the Dabie-Sulu UHP metamorphic zone, suggesting decoupling of the upper crust from the underlying basement during the initial stages of continental subduction; (2) the Dabie and Sulu HP to UHP metamorphic zones comprise several HP to UHP slices, which have an increased trend of metamorphic grade from south to north but a decreased trend of peak metamorphic ages correspondingly; and (3) the Chinese Continental Science Drilling (CCSD) project at Donghai in the Sulu orogen reveals that the UHP metamorphic zone is composed of several stacked slices, which display distinctive high and low radiogenic Pb from upper to lower parts in the profile, suggesting that these UHP crustal slices were derived from the subducted upper and middle crusts, respectively. Detachment surfaces within the deeply subducted crust may occur either along an ancient fault as a channel of fluid flow, which resulted in weakening of mechanic strength of the rocks adjacent to the fault due to fluid-rock interaction, or along the low-viscosity zones which resulted from variations of geotherms and lithospheric compositions at different depths. The multi-slice successive exhumation model is different from the traditional exhumation model of the UHP metamorphic rocks in that the latter assumes the detachment of the entire subducted continental crust from the underlying mantle lithosphere and its subsequent exhumation as a whol  相似文献   

17.
The study of continental deep-subduction has been one of the forefront and core subjects to advance the plate tectonics theory in the twenty-first century. The Dabie-Sulu orogenic belt in China crops out the largest lithotectonic unit containing ultrahigh-pressure metamorphic rocks in the world. Much of our understanding of the world's most enigmatic processes in continental deep-subduction zones has been deduced from various records in the Dabie-Sulu rocks. By taking these rocks as the natural laboratory, earth scientists have made seminal contributions to understanding of ultrahigh-pressure metamorphism and continental collision. This paper outlines twelve aspects of outstanding progress, including spatial distribution of the UHP metamorphic rocks, timing of the UHP metamorphism, timescale of the UHP metamorphism, the protolith nature of deeply subducted continental crust, subduction erosion and crustal detachment during continental collision, the possible depths of continental subduction, fluid activity in the continental deep-subduction zone, partial melting during continental collision, element mobility in continental deep-subduction zone, recycling of subducted continental crust, geodynamic mechanism of postcollisional magmatism, and lithospheric architecture of collision orogen. Some intriguing questions and directions are also proposed for future studies.  相似文献   

18.
Fluid activity during exhumation of deep-subducted continental plate   总被引:9,自引:0,他引:9  
It is well known that a great deal of fluid wasreleased during subduction of oceanic crust, resulting in arcmagmatism, quartz veining and metamorphic mineralizationof syn-subduction. In contrast, the process of continentalsubduction is characterized by the relative lack of fluid andthus no arc magmatism has been found so far. During exhu-mation of deep-subducted continental crust, nevertheless,significant amounts of aqueous fluid became available fromthe decomposition of hydrous minerals, the decrepitation ofprimary fluid inclusions, and the exsolution of structuralhydroxyls. This kind of metamorphic fluid has recently at-tracted widespread interests and thus been one of the mostimportant targets in deciphering the geological processesconcerning metamorphism, magmatism and mineralizationin collisional orogens. A large number of studies inlvolvingstable isotopes, fluid inclusions and petrological phase rela-tionships have been accomplished in past a few years withrespect to the mobility and amount of met  相似文献   

19.
Backscattered electron images, in situ Hf isotopes, U-Pb ages and trace elements of zircons in a banded granulite xenolith from Hannuoba basalt have been studied. The results show that the banded granulite is a sample derived from the early lower crust of the North China craton. It is difficult to explain the petrogenesis of the xenolith with a single process. Abundant information on several processes, however, is contained in the granulite. These processes in-clude the addition of mantle material, crustal remelting, metamorphic differentiation and the delamination of early lower crust. About 80% of zircons studied yield ages of 1842 ±40 Ma, except few ages of 3097-2824 Ma and 2489-2447 Ma. The zircons with ages older than 2447 Ma have high εHf (up to +18.3) and high Hf model age (2.5-2.6 Ga), indicating that the primitive materials of the granulite were derived mainly from a depleted mantle source in late Archean. Most εhf of the zircons with early Proterozoic U-Pb age vary around zero, but two have  相似文献   

20.
Pb isotopic geochemical study on the crustal structure of Tongbaishan   总被引:4,自引:0,他引:4  
Pb isotopic composition of the Tongbai complex, distributed in the Tongbaishan to the west of the Dabieshan, ranges between the Dabie core complex and the Dabie ultral-high pressure (UHP) metamorphic complex, the latter having more radiogenic Pb isotopic composition than the former. Granites from the Jigongshan pluton, which intruded mainly into the Tongbai complex, are distinct from the Tongbai complex but similar to the Dabie core complex in Pb isotopic composition, showing that the magma of the Jigongshan granites was derived from the partial melting of the Dabie core complex. According to Pb isotopic compositional variation model in the vertical crustal section and magma source from the Jigongshan pluton, it is suggested that the Tongbai complex was an upper rock serial of the Dabie core complex, which is beneath the Dabie UHP metamorphic complex in the crustal structure of the Tongbai-Dabie orogenic belt. The Tongbai complex was not well preserved in the Dabie area due to the high exhumed crustal section. However, the crustal section in the Tongbai area was exhumed less than that in the Dabie area, and the deep crust in the Tongbai area still contains the basement composition similar to the Dabie core complex. Therefore, the crustal basements from the Dabie to Tongbai areas are united. The present distribution of the basement blocks in different locations of the Tongbai-Dabie orogenic belt reflects different exposure of the crustal section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号