首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
超级电容器用活性炭电极的制备及电化学性能研究   总被引:2,自引:0,他引:2  
以石油焦为原料,采用KOH活化法制备比表面积为2 170 m^2/g的高比表面积活性炭,采用该材料作为电极材料,组装成超级电容器,并对它进行了恒电流充放电实验、循环伏安实验和交流阻抗等实验,结果表明,制备的活性炭作电极材料组装的电容器具有良好的电化学性能.  相似文献   

2.
采用烟煤、椰壳为原料制备活性炭,活化剂为KOH,活化温度为800℃。活性炭的结构和形貌采用N2吸附、扫描电子显微镜(SEM)进行表征,并以其作为超级电容器电极材料进行电化学性能测试,包括恒流充放电、循环伏安和交流阻抗测试。结果表明:煤和椰壳共活化制备活性炭具有一定的协同作用,所制备的活性炭具有高的比表面积(682 m2/g),比电容高达198 F/g,并且具有优良的充放电可逆性以及低的阻抗。  相似文献   

3.
活化剂种类对活性炭结构及性能的影响   总被引:1,自引:0,他引:1  
以石油焦为前驱体,分别以KOH,NaOH,K2CO3和Na2CO3为活化剂通过化学活化制备活性炭,采用振实密度仪和全自动N2吸附仪研究活性剂对活性炭结构的影响,并以制备的活性炭为电极材料,l mol/LEt4NBF4/PC为电解液组装模拟电容器,采用LAND快速采样电池测试仪和电化学工作站考察不同活化剂对活性炭电化学性能的影响.研究结果表明:KOH具有最强的活化能力,其活化制备的活性炭具有较高的微孔含量和发达的孔隙结构,比表面积达2 362m2/g,孔容达到1.263 cm3/g,以其作电极材料,表现出良好的电容行为,质量比容量最高达到128.0 F/g,随着活化剂碱性的降低,活化能力大幅度降低,制备的活性炭比表面积和孔容急剧减小,K2CO3和Na2CO3不适合用作活化石油焦制备活性炭的活化剂.  相似文献   

4.
以生物质废弃物酸角壳为原料,通过KOH活化制备酸角壳基活性炭(HHC),采用傅里叶变换红外光谱、扫描电子显微镜表征。酸角壳基活性炭吸附亚甲基蓝(MB)的研究表明:吸附是自发进行,吸热,增加混乱度有利于吸附进行;准二级吸附动力学方程及Langmuir等温吸附模型能较好拟合吸附过程。以3 mol/L KOH为电解液,在三电极体系下测定HHC制备的超级电容器电极的循环伏安、恒流充放电、循环性能和交流阻抗。结果显示,电流密度为5 A/g时,首次放电比电容为100 F/g,循环20次后容量保持率为100%,具有较好的循环性能,适合用作超级电容器电极材料。  相似文献   

5.
将废旧轮胎热裂解得到炭黑,采用氢氧化钾(KOH)为活化剂,通过高温活化、浓硝酸(HNO_3)酸化处理成多孔活性炭,制备超级电容器电极材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和氮气吸脱附对材料的微观形貌、晶体结构以及比表面积、孔径分布进行分析,并通过电化学工作站CHI660E对热裂解炭黑电极材料的电化学性能进行测试。结果表明:利用KOH活化以及浓HNO3酸化所制备的电极材料具有较好的电化学性能,其在0.5 A/g的电流密度下的放电比容量达到160 F/g,在20 A/g的电流密度仍然有127 F/g的放电比容量,容量保持率为79%,表现出较好的倍率性能。  相似文献   

6.
以碳化后的中间相沥青为原料,分别采用化学活化和物理-化学联合活化工艺制备了超级电容器用活性炭电极材料,对不同活化方式制备的活性炭电极材料的微晶结构、孔径分布、比电容量、循环伏安和交流阻抗特性进行了比较.实验结果表明:采用物理-化学联合活化工艺制备的活性炭电极材料具有更理想的微晶结构和中孔含量.活性炭电极材料的结构与孔隙分布对电性能有明显影响,采用联合活化方式制备的电极材料具有较高的面积比容量、较好的功率特性及较理想的电容特性.  相似文献   

7.
通过对普通颗粒活性炭采取不同优化工艺处理,发现经空气预氧化后,再用混合酸(磷酸+硫酸)或氢氧化钾进行活化处理,可得到高比电容超级电容器用活性炭.红外光谱和氮吸脱附分析表明:预氧化处理并没有明显增加其表面官能团,但有利于疏通孔道,提高活性炭的有效孔容积;混酸和强碱活化处理明显丰富活性炭的表面电活性基团,并且增大材料的比表面积.采用交流阻抗、循环伏安、恒流充放电等电化学方法对活化材料进行超级电容行为测试,表明经氧化-活化处理的活性炭电极传荷阻抗小、电容特征显著,循环性能稳定.在1.0 A/g电流条件下,经过空气氧化-混酸活化处理的活性炭(POAC_A)电极比容量为187 F/g,空气氧化-碱活化处理的活性炭(POAC_B)电极比容量达到206F/g.  相似文献   

8.
(NiO+CoO)/活性炭超级电容器电极材料的制备及其性能   总被引:2,自引:0,他引:2  
以表面包覆7%Co(OH)2的球形Ni(OH)2为原料,在450℃热分解得到(NiO CoO)粉末,将其与活性炭(AC)按不同质量比混合均匀,得到超级电容器用(NiO CoO)/AC 复合电极材料.采用扫描电镜(SEM)、X 射线衍射(XRD)、热重分析(TG)等方法对样品进行物理性能测试,用循环伏安(CV)法研究不同配比的(NiO CoO)/AC复合电极在6mol/L KOH 电解液中的电化学性能,并对复合电极材料模拟电容器与活性炭模拟电容器进行恒流充放电测试.研究结果表明在6 mol/L KOH电解液中,当复合材料中的(NiO CoO)质量分数为6%时,所制备的单电极比电容量最大,为240 F/g,比纯活性炭电极的比电容(约160 F/g)提高50%;复合电极模拟电容器具有较好的可逆性和电化学性能.  相似文献   

9.
以稻草秸秆为原料,在N_2气氛下,采用预碳化-碱活化的方法制备了活性炭材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N_2吸附-脱附等手段进行表征.结果表明,当活化温度为700℃时,制备的活性炭比表面积为2 743 m~2/g.将其用于超级电容器的电极材料显示了较好的性能,当电流密度为5 A/g时,比电容可达到380 F/g,循环充放电1 000次后,比电容值约为首次比电容的85%,具有较好的循环稳定性.  相似文献   

10.
用固相合成法制备Ag2O作为超级电容器材料,通过循环伏安与恒流充放电等测试手段对Ag2O电极及与作为负极的活性炭电极组成的电容进行分析.结果表明,在7mol·L-1KOH电解液中,Ag2O电极在0.15~0.35V(相对于Hg/HgO)的电压范围内表现出了法拉第电容特性.在不同电流密度下,电极比容量达427.3~554.9F·g-1,Ag2O/活性炭单体电容器比电容为42.5~61.65F·g-1.同时还对正极中Ag2O的含量及导电剂对Ag2O/活性炭单体电容器性能的影响进行了研究.  相似文献   

11.
This work reports the effects of activation temperatures on the porous development and electrochemical performance of activated carbons. Herein, activated carbons were prepared from the biowaste of mangosteen peel by using KOH activation at temperatures of 400, 600, and 800 ?°C. The results demonstrate that the specific surface area increases with increasing the activation temperatures in which the well-developed porous structure after KOH activation at 800 ?°C provides the highest specific surface area of 1039 ?m2 ?g?1. At 600 ?°C, the activated carbon delivers the highest specific capacitance value of 182 ?F ?g?1 ?at a current density of 0.5 ?A ?g?1 in 3 ?M KOH aqueous electrolyte. This is correlated well with its high micropore fractions (99%). Moreover, it was found that the activation temperature changes the major contribution of oxygen-containing functional group on surface of activated carbon, which is beneficial for the enhancement of the specific capacitance value of activated carbon at the temperature of 600 ?°C. This work suggests that the activation temperature is a key to optimizing the electrochemical performance of activated carbons. Overall, our activated carbons can be considered as a strong candidate for use as electrode materials in supercapacitors.  相似文献   

12.
N-doped carbons were fabricated from zeolite-templated carbon via modification with melamine and mild KOH activation. The N-doping treatment and KOH activation slightly lowered the surface areas of pristine zeolite-templated carbon; nonetheless, N-doped carbons with a lower surface area exhibited much higher capacitance and cycling stability as fabricated into symmetric supercapacitor. Significantly, N-doped carbon obtained at 700℃ showed a capacitance of 45.7 F/g at 0.1 A/g and 42.0 F/g at 10 A/g for the fabricated supercapacitor with 6 M KOH electrolyte, with 92% retention of initial capacitance as current density increased up to 100-fold. This performance was attributed to the dual contribution of electric double-layer capacitance and pseudo-capacitance. The assembled supercapacitor also exhibited excellent cycling stability, with 91% capacitance retention at 10 A/g after 10000 cycles.  相似文献   

13.
以晋城无烟煤为原料,先经浮选和酸洗脱灰,得到灰分1.2%的超低灰无烟煤,再将其与活化剂KOH按比例混合、粘结成型,并经活化处理制备高比表面积活性炭。主要考查了碱炭比、活化温度和活化时间对活性炭比表面积及收率的影响。结果表明,晋城超低灰无烟煤制备高比表面积活性炭的最佳工艺条件为:碱炭比5∶1,活化温度800℃、活化时间1 h,活性炭的BET比表面积为1 800.71 m2/g,孔径大小分布于0.3~5 nm之间,以微孔为主。  相似文献   

14.
天然气是一种清洁能源,作为汽车代用燃料以及从天然气开采地到各用户单位之间的运输,都需要有效的存储技术.天然气水合物(NGH)能够降低甲烷存储的成本,而多孔材料孔内生成气体水合物能够有效提高储气密度,本研究目的是合成在孔内能够生成甲烷水合物的低成本高性能吸附剂.首先以农业废弃物玉米芯为原料,采用KOH活化法制备活性炭,其湿储甲烷最优合成条件为:在400,℃炭化30,min,碱炭质量比5∶1、850,℃活化1.0,h合成出C-8高性能活性炭,其孔容达到2.264,cm^3/g,比表面积为2 993,m^2/g,孔径分布主要集中在2~3,nm.合成的C-8是非常好的甲烷湿储吸附剂,在水炭比为3.68时在9.40,MPa下CH4达到最大吸附量为69.66%,是其干燥样品最大吸附量的3.25倍,并可以在较大压力范围内使存储的甲烷提供平稳的放气量,有望作为新型的甲烷水合物存储吸附剂应用于天然气汽车上.  相似文献   

15.
以淀粉为原料,分别采用H3PO4活化法和物理-化学复合活化法制备活性炭,并将制备的活性炭组装成超级电容器。研究了制备工艺对活性炭孔结构及电容特性的影响;通过氮气吸附和SEM方法表征了淀粉基活性炭的孔结构和表面形貌,通过循环伏安曲线、恒流充放电、交流阻抗实验考察了其电化学性能。结果表明,比表面积与比电容并没有线性关系;物理-化学复合活化法在温度为850 ℃、活化时间为2h条件下,制备的淀粉基活性炭比表面积为1438 m2/g,比电容为150 F/g。  相似文献   

16.
以热固性酚醛树脂为原料,采用CO2物理活化法制备双电层电容器,用高比表面积活性炭.由氮气吸附法测定活性炭的比表面积和孔结构,采用循环伏安、交流阻抗和恒电流充放电考察其在3000/KOH水溶液中的电容特性.结果表明,随着活化时间的延长,所得活性炭收率下降,比表面积、总孔孔容和质量比电容则不断增加;具有高比表面积和宽孔径分布的试样APF957质量比电容值最高,电流密度由50 mA/g提高到1000 mA/g时,其放电比电容由211.6 F/g降低到196.5 F/g,容量保持率达到9300/,显示出良好的功率特性.  相似文献   

17.
以热处理后的煤沥青焦为原料,采用KOH活化法制备了具有较小比表面积(<200m~2/g)的系列微晶炭.采用N_2吸附、X射线衍射(XRD)和X射线光电子能谱(XPS)等手段表征了微晶炭的孔结构、微晶结构以及表面化学性质,研究了微晶炭作为超级电容器电极材料在1 mol/L的四乙基四氟化硼酸铵盐/碳酸丙烯酯电解液体系中的电容性能.结果表明:制得的微晶炭具有大量类石墨微晶和较高的石墨化度,d_(002)(晶面层间距)为0.356~0.666 nm,表面含碳量大于95%;活化6 h后,在4.0 V下微晶炭的质量比电容高达139 F/g.微晶炭的储电行为包括插层电容和双电层电容两部分,其中电活化所造成的插层电容是决定微晶炭最终比电容的主要因素,插层电容主要由电极材料的石墨化度决定.  相似文献   

18.
以炭气凝胶微球为原料,分别采用CO2和KOH作为活化剂,研究物理活化和化学活化对炭气凝胶微球孔结构和电化学性能的影响差异,探讨CO2和KOH的活化机理。结果表明,CO2和KOH活化均能有效改善炭气凝胶微球的孔结构,比表面积最高可达1 320 m2/g;同时显著提高材料的电化学性能,活化后的比电容最高可为活化前的3倍。结果还表明两种方法的活化机理不同,CO2活化,有利于保持炭气凝胶微球的中孔,为电子进出提供大量的快速通道,提高传质速率;KOH活化,对炭气凝胶微球的微孔形成非常有利,可增大电化学活化表面,提高电化学性能。  相似文献   

19.
表面含氧官能团对活性炭电化学性能的影响   总被引:1,自引:0,他引:1  
采用浓硝酸对椰壳活性炭和各壳活性炭进行液相氧化改性后,制成了以KOH为电解液的超级电容器的炭电极,研究表面含氧官能团在碱性电解液中对电容器电极的电化学性能的影响.运用低温N2吸附、XPS和FTIR表征活性炭孔结构和表面性质.研究结果表明,氧化后活性炭的比表面积和孔容降低,表面含氧量增大.且经硝酸氧化后炭表面的含氧官能团含量发生了变化,即在内酯基的含量减少的同时,羟基、羰基和菝基的含量增加,其中羟基含量的增幅最大.在50mA/g电流密度下经过100次充放电循环,氧化后的椰壳活性炭和杏壳活性炭质量比电容分别达到193 F/g和150F/g,均比氧化前提高了30%以上.由XPS的分析结果判断,羟基对电极比电容提高的贡献最大.同时,在大电流充放电时,氧化后炭电极的比电容的衰减率明显低于氧化前.  相似文献   

20.
碱炭比对活性炭孔结构及电容特性的影响   总被引:2,自引:0,他引:2  
以酚醛树脂为原料、KOH为活化剂制备双电层电容器用高比表面积活性炭.考察KOH与酚醛树脂炭的质量比对所制得的活}生炭的吸附性能、孔径分布和比电容的影响.实验结果表明,随着碱炭比的增大,所得活性炭的BET比表面积、总孔容积和中孔容积不断增大,碘吸附值和亚甲基蓝吸附值也不断增大,比电容则先增大后减小并在碱炭比为4时达到最大值74.2F/g.以这种高比表面积活性炭组装成的电容器具有良好的充放电性能和循环性能,既能在大电流下快速充放电也能在小电流下缓慢充放电。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号