首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
本文根据非局部场理论,从对裂纹扩展过程中流变与耗散现象的大量观察和研究,建立了裂纹体在裂纹扩展过程中的热力平衡方程。在引入质量、线动量和能量等的贡献之后,证明了裂纹体的局部动量和局部能量在裂纹扩展过程中均不守恒,而且诸热力学量对裂纹扩展所造成的新表面的贡献可用其局部化剩余来表示。从流变理论和耗散理论出发,建立非局部热力平衡基本方程后,论证了前文提出的关于裂纹扩展过程的五个基本观点。从耗散势函数出发建立了热流变性材料的非局部本构关系。如果这种本构关系对于每个独立体元和时间增量均能导出它的局部化形式,则可提出表面-体积能量密度理论。在体积随表面变化的意义上,给出耗散与不可逆性的定义。从而正确认识涉及体积和表面变化的热能与机械能交换的本质。本文与前文证明了裂纹扩展的全过程本质上是一个非线性非平衡态不可逆热力学过程,进一步完善了流变断裂学的理论基础。  相似文献   

2.
应用流变断裂学理论,本文着重研究了湖南柘溪水电站单支墩大头坝混凝土裂纹体裂纹发生与发展的计算程序。理论计算结果与现场观测结果基本一致。  相似文献   

3.
根据流变断裂学的理论和方法,结合非局部场理论和不可逆热力学,对裂纹扩展过程中的变形、热力平衡、热流变响应以及断裂的尺寸效应进行了探讨.由于变形的非协调性.以及裂纹扩展过程中新表面的产生,导致体积与表面物理量的相互转换,而使局部化假设失效,文中导出了一组更为广泛的描述裂纹扩展过程的局部热力平衡方程以及相应的边界条件,本文将断裂作为变形的极限行为,首次将它引入本构方程,把裂纹扩展表面能作为本构变量,给出了裂纹扩展对热流变响应的影响的一般形式,进一步揭示了Griffith表面能的本质和断裂的不可逆性,从而把流变与断裂在不可逆热力学基础上更紧密地结合起来了。最后,从一般的角度研究了断裂的尺寸效应,并指出非均质是产生尺寸效应的重要原因之一。  相似文献   

4.
本文简要地介绍了我们开创的流变学的一个新分支学科——流变断裂学的主要成果。应用这一新理论,我们成功地解释了拓溪水电站单支墩大头坝迎水面上垂直裂纹的发生与发展。  相似文献   

5.
根据裂纹扩展过程中的流变与耗散现象,建立了裂纹扩展期间裂纹体的热力学平衡方程,并依局部场论探讨了局部化剩余的意义。然后,我们把裂纹扩展问题转化为含有质量流源的一个扩散运动问题,并应用内部体力场来研究裂纹扩展力。引入外部热汇,我们把能量耗散问题转化为一个热传导问题。令Clau-sius非补偿热为非负值,建立了裂纹扩展过程中的广义熵不等式,引入耗散势函数,使该不等式转化为某一泛函的可积微分不等式,从而得到它的完全解。只有纵观裂纹扩展的全部历史,才能确定裂纹扩展特性,为此采用Lyapounov函数型的记忆泛函描述全过程,将此全过程分为孕育期、稳定扩展期及失稳扩展期,并给出各个时期的相应判据。本文提出,裂纹体的裂纹扩展过程是: 1 非平衡态不可逆热力学的相容过程; 2 动量不守恒而能量亦耗散的过程; 3 伴有热源汇的非纯粹力学过程; 4 具有衰退记忆的历史延拓过程; 5 微观动力学可逆与宏观热力学不可逆之间的互补过程。  相似文献   

6.
应用粘弹性断裂力学理论本文分析了某水电站混凝土大头坝坝墩上游面中心垂直裂纹的延迟失稳问题。采用Rabotnov体作为流变模型计算了裂纹延迟失稳扩展深度。采用裂纹-切口模型及COD判据计算了裂纹扩展速度及寿命与初始裂纹深度之间的关系。文中还分析了该坝墩裂纹自动止裂的原因。  相似文献   

7.
为对混凝土构筑物的裂纹延迟失稳扩展现象进行严格的理论论证以更深刻地理解它,基于整体能量平衡和裂纹前缘双重衰坏区的概念,建立了裂纹失稳扩展孕育期的理论。将混凝土构筑物视为由一个弹簧和一个Kelvin模型串联而成的三元流变模型表征的标准线性固体,分析了裂纹扩展期间发生的能量耗散和能量释放率G_1。在裂纹失稳扩展的孕育期,外衰坏区的整体特性是初级蠕变的而不是弹性的或瞬时塑性的形变,内衰坏区则随时间而发展二级蠕变。引人C*一积分的定义,并从而推导出用以解释孕育期间裂纹尖端附近整个衰坏区形变特性的特征时间和长度。其次,得到另外一些重要结论如下: 1 为正确对待混凝土构筑物的断裂,应将它看作是一个具有记忆的历史过程、一个具有耗散能的热力学不可逆过程。因此,通常的局部能量平衡方程不再能做为设立的整体能量平衡方程的推论而得到。2 将混凝土视作为标准线性体,其应变能释放率可分成两部分,一部分表明迟滞弹性效应,另一部分表明粘性流效应。所以,裂纹扩展时能量耗散,并且裂纹的形成是不可逆的。3 混凝土裂纹体的G-判据与K-判据间的关系是时间相依的。在恒载条件下,它的能量释放量随时间而增长到一个较高的极限值,从而存在裂纹延迟失稳扩展的临界裂纹尺寸。4 混凝土构筑物的断裂过程中,裂纹失稳扩展前是存在亚临界扩展阶段的,它显现与否取决于所施应力水平。在此阶段,虽然外载保持固定,但裂纹仍随载荷持续时间而缓慢增长,所以裂纹前缘的应力场也是时间的函数。5 在裂纹失稳扩展的孕育期,裂纹尖端的外衰坏区呈初级蠕变变形.而内衰坏区随时间发展着二级蠕变。在长时间后,整个衰坏区的蠕变发展。裂纹尖端应力场可由包括C*的方程(44)给出,而C*与载荷参数有关。6 用以说明裂纹尖端附近整个衰坏区变形特性的特征时间,可从衰坏区蠕变应变集中的“短时间”与整个衰坏区蠕变从初级发展到二级而三级蠕变的“长时间”之间的差推导出。本文研究成果解释了某单支墩大头坝在蓄水8年后原有约3米长的浅裂纹突然失稳扩展成深达50米左右深裂纹的成因。  相似文献   

8.
本文根据流变断裂学理论,结合非平衡态热力学,对裂纹扩展过程中裂尖塑性流变区由于内耗热而形成的温度场,进行了理论和实验研究。在理论上分析了材料内部的不可逆变化及熵产生、熵流等内耗机制,得到内耗热源函数,指出裂尖温度场的成因,从而进一步得到控制温度场分布和变化的热传导方程。在讨论内耗对裂纹扩展的影响时,我们推出耗散型能量守恒方程的微分和积分形式以及裂纹扩展的耗散型控制方程。在实验研究中,我们测定了裂尖区的温度场,从而验证了本文的理论,指出经典断裂力学的不足。  相似文献   

9.
本文将映射分为两个同胚映射,把理性连续统力学的方法推广到断裂力学,得到与Eftis等不同的一些新结果。本文建立了非线性流变断裂学的基本平衡定律;得出了裂纹扩展过程所应满足的一组必要条件(包括动量条件、动量矩条件、能量条件及熵条件);提出了考虑热效应的一般能量断裂判据,它把已有一些判据作为特殊情况包括在内。把裂纹扩展作为不可逆热力学过程,本文得到新断裂表面上的熵不等式,丛而揭示出经典断裂理论中存在的理论缺陷。我们的结论是:只要裂纹在扩展,就不可能是纯粹的力学过程,断裂必然伴随着热传导和熵产生。经典断裂力学中假设的等温或绝热条件由于违反热力学第二定律是不可能实现的,从这个意义上说经典断裂理论是热力学不相容的。  相似文献   

10.
本文克服了Liebowitz和Eftis在有关文献中出现的矛盾,从不可逆过程热力学观点,导出了裂纹体的总体平衡方程,裂纹体内的局部平衡方程和断裂表面的局部平衡方程,为在各种复杂条件下,正确建立裂纹体的断裂准则,提供了必要的理论基础。  相似文献   

11.
用扫描电镜(SEM)研究了聚碳酸酯/双峰聚乙烯(PC/BMPE)合金断裂面的形貌,其断裂面可以分为裂纹引发区和裂纹扩展区.裂纹扩展区形成了大量的纤维,且这些纤维具有很大的塑性形变,而裂纹引发区几乎没有纤维形成,这是裂纹在缺陷处引发时存在气穴现象的缘故.冲击作用所产生的应力导致了裂纹尖端微空穴和聚合物纤维连结的形成,这个过程包括表面牵拉和纤维拉伸,裂纹形成时存在纤维的微颈细化过程,并用微颈细化理论建立了其微颈细化的理论模型.  相似文献   

12.
为了进一步验证我们关于流变断裂学理论的新见解,特别是作者提出的“变质量断裂模型”的正确与否,本文对裂尖塑性流变区的实验研究进行了阶段性的报告。文中提出了“光塑性实验新方法”,在国防科大和兰卅石油机械研究所的支持下,利用现代高科技成果对塑料试件随外载连续而不可逆的色度场进行了数字图象分析和红外扫描研究后,使我们能定量地给出裂尖塑性区随裂纹扩展的变化情况及对应的温度场,应力应变场和热耗散值。文中给出了部分由计算机处理后的彩色图片和计算结果。这些新的方法和实验结果表明我们在这方面的研究走在国内外前列,它不但为断裂力学研究提供了新的方法和手段,而且在弹塑性力学,有限元计算和解决工程实际问题等方面都具有广泛而重要的应用价值。  相似文献   

13.
考虑裂尖损伤的粘弹性裂纹扩展规律   总被引:1,自引:0,他引:1  
本文根据作者1在对聚合物断裂破坏过程的实验观测基础上,应用连续损伤力学的基本观点和方法所建立的裂纹尖端破坏模型,研究了考虑裂尖损伤的粘弹性裂纹扩展规律,讨论了以损伤演化和裂纹扩展行为构成的聚合物材料破坏的全过程,并在理论分析的基础上,具体计算了某种聚合物在恒定载荷作用下的裂纹扩展行为,预期的理论结果与实验值吻合的较好.  相似文献   

14.
含缺陷物体形变过程中的能量耗散及其分形分析   总被引:2,自引:0,他引:2  
含缺陷物体的形变过程是一个缺陷跨多层次演化的复杂过程,不同层次上的演化各有独特性,但其共同特点是耗散性.以过程中的耗散性为研究对象,实验研究表明:缺陷演化过程中因能量耗散而形成的缺陷局域温度场具有分形特征,其分形维数是时间的函数.本文从理论上初步探讨温度场分形维数、断面分形维数与能量耗散的关系,并讨论了分形效应产生的物理基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号