首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,京津冀地区重污染天气频发,严重影响了人们的生产生活和身体健康.2017年5月4-6日京津冀地区部分城市发生了一次由沙尘引起的重污染天气.通过对此次沙尘天气进行空气污染整体情况、污染过程出现的主要污染物、颗粒物与各气象要素的相关性的分析,发现本次污染过程具有形成快、持续时间较长、消散快的特点;以PM2.5与PM10为代表的颗粒物是此次污染的主要污染物;气压、平均气温和风向风速等气象因子.影响本次重污染过程;本次扬沙、浮尘天气的污染源是从外地输送而来,是受到来自西北的气流影响而形成的.  相似文献   

2.
利用2013—2016年廊坊市环境监测数据以及同期相关气象资料,采用数理统计等方法,研究重污染天气特征及影响的气象条件.结果发现:空气质量达标天数呈逐年上升趋势,而重污染天数逐年下降;重污染天气主要出现在1—3月、10—12月;重污染天气首要污染物只有PM_(10)、PM_(2.5)、O_3与PM_(10),PM_(2.5)4种情况.重污染天气日气象要素特征明显:主导风向主要位于风玫瑰图的第一、第三、第四象限,风速基本上小于1.6 m/s;相对湿度多在50%以上;年均能见度小于10 km;1—3月、10—12月主要污染月逆温层厚度更厚,强度更强,逆温出现频率也更高;静稳天气指数除了4、5、7月小于10以外,其余月均大于等于10;3—6月混合层高度在1000 m以上,其余月小于1000 m;重污染日霾、雾、轻雾、露、霜、结冰6种天气发生的频率较高.  相似文献   

3.
利用九江市环境保护监测站的日均AQI值和首要污染物等监测资料、常规地面、高空气象观测资料,对2014-2016年15个重度以上污染日进行天气形势分析并分型,利用HYSPLIT后向轨迹模型污染天气气团轨迹进行模拟。得到九江市重度以上污染天气的天气形势:高压型、高压后部型、高压底部型、低压型。地面有弱冷空气输送,或地面均压场、850~700 hPa有显著的暖平流输送形成暖盖的静稳天气形势有利于出现重污染天气。根据污染源分为3类:外部输入型、混合型(外部输入加本地堆积型)和本地堆积型。15个个例中有7个的重污染天气个例是由于前期有弱冷空气扩散南下,携带污染物从华北、长三角到本地。混合型为前期48-72 h有污染物的输送,配合稳定的天气形势,污染物在近24 h内堆积,形成的污染天气。本地污染型3个个例造成污染的主要原因并不是适宜的天气形势,而是人为活动造成的。  相似文献   

4.
华北平原是中国三大平原之一,特殊的地理位置、较多的重工业企业及采暖季相对更高的污染排放,导致采暖季极易出现大范围、长时间的污染过程,PM2.5浓度明显高于周边区域。为了更好地了解天气系统及气象要素对采暖季华北平原城市空气质量的影响,以北纬32°—40°、东经114°—120°华北平原地区50个城市为研究对象,分析2015—2021年采暖季(11月至次年3月)气象条件对华北平原采暖季大范围重污染过程的影响。研究表明,华北平原发生重污染时,高空500 hPa环流曲率减小,环流相对更加平直,垂直方向逆温出现概率增大,水平及垂直方向更加静稳,污染物扩散能力减弱,近地面山东中南部、河南异常偏南风导致区域升温、增湿,有利于颗粒物吸湿增长及二次转化,河北中西部异常偏东至东北风,导致污染物受太行山山脉影响,在太行山东侧堆积,易在山前形成大范围污染过程,且与山东中南部、河南的异常偏南风形成区域风场辐合,污染物扩散条件不利。分析2021年1月20日至28日一次污染过程发现,污染发生期间华北平原高空大气环流相对平直,地面以均压场控制为主,多静风辐合,湿度持续较大,整体污染扩散条件不利,...  相似文献   

5.
利用2014年-2015年九江市环境监测站污染物浓度监测资料以及常规的气象观测资料,统计分析近两年九江市PM_(2.5)浓度的时间变化特征及其与气象要素的关系。结果表明:1)2014-2015年年九江市年平均污染日数为68 d,其中首要污染物为PM_(2.5)的天数占64%,重度污染日的首要污染物均为PM_(2.5);2)PM_(2.5)日变化表现为白天扩散晚上堆积,PM_(2.5)的月平均峰值主要出现在10月至次年1月以及5月底至6月初;3)秋冬季的污染主要由污染物水平输送造成,其次出现在不利于污染物扩散的稳定大气层结条件下。春夏交替期的污染主要由秸秆燃烧造成;4)PM_(2.5)浓度与能见度、温度风速、降水量呈显著负相关,而且弱降水有利于污染的加剧,高相对湿度更有利于出现重污染天气。  相似文献   

6.
2018年3月9日~14日天津市津南区出现了一次持续性空气污染过程,利用津南区PM2.5质量浓度观测资料和地面气象要素观测数据,从天气形势和气象要素2方面对此次重污染过程进行分析。结果表明,此次持续性污染过程PM2.5质量浓度达271μg/m3,以细颗粒污染物为主;高空主要为高压脊前偏西风或平直的西风气流,低层受西南风控制;地面位于高压后部或低压前部,西南风不断将污染物从河北中南部向津南区输送。分析认为,高相对湿度、低风速和较低的混合层高度是造成此次持续性污染天气过程的主要气象要素,其中PM2.5质量浓度与混合层高度具有负相关。  相似文献   

7.
利用NCEP/NCAR和FNL再分析资料,并结合长三角城市群地面气象观测数据,探讨了2014年1月18—25日长三角城市群一次重污染天气过程的气象成因以及污染物路径分析。结果表明,污染期间随着相对湿度和PM2.5浓度的升高,大气能见度明显降低。2014年1月影响我国的东亚冬季风势力偏弱,导致重污染期间冷空气活动偏弱;此外,垂直方向上出现逆温,限制垂直运动的发生、发展。上述因素有利于长三角地区污染物在近地面层堆积,导致重污染天气的发生发展。污染物从温度高的地方向温度低的地方扩散。低空气温低时,不易形成对流,促使污染物在长三角地区堆积。HYSPILT模式模拟显示污染物主要来自山西、河北一带,以平流和弱辐散的方式向长三角地区输送。大气化学模式WRF-Chem可较好地模拟出PM2.5浓度的变化过程,可用作长三角城市群重污染天气预报的业务模式。  相似文献   

8.
石家庄市冬季重污染过程特征及成因研究   总被引:2,自引:1,他引:1  
利用石家庄市大气环境监测数据和气象观测资料,对比分析了2015年12月6日至13日和12月21日至26日石家庄市两次持续性重污染天气过程的演变特征及主要影响因素。结果表明:两次重污染过程持续时间长、污染程度重,PM2.5对污染过程的影响大,但污染物变化趋势和浓度水平存在差异。高低空稳定的天气形势配置是两次重污染过程形成的直接原因。在这些天气形势影响下,气温低(1.5℃)、湿度高(平均相对湿度75%)、风速小(1.5 m/s)、气压低(1016 h Pa),大气层结稳定,逆温层厚、混合层高度低(750 m),是造成两次重污染过程的重要原因。燃煤、机动车尾气是石家庄冬季重污染的主要污染源,东北部、北部和西南部周边污染物的输送对重污染天气的形成发展也有一定的影响。  相似文献   

9.
利用常规资料和内蒙古环境监测中心站的空气质量监测资料及NCEP资料分析2014年12月25日至30日内蒙古的一次空气污染事件。研究表明:此次雾霾的主要污染物为PM_(2.5),在12月27~29日为污染最严重时段,选取呼和浩特站作为代表,AQI值均在200以上;12月28~29日高空受西北气流控制,850,hPa上存在温度脊和逆温层,地面一直受弱低压场控制,地面风速维持在4,m/s以下,相对湿度基本维持在40%~60%,,弱暖平流控制,这是造成此次天气过程污染物不易扩散的主要因素。  相似文献   

10.
石家庄市秋冬季大气环流型下的气象和PM2.5污染特征   总被引:1,自引:0,他引:1  
根据石家庄市2013—2018年秋冬季(当年11—12月和次年1—2月)11种大气环流型天气条件下的地面和垂直气象特征, 归纳出5类大气环流条件, 并结合气团传输轨迹和PM2.5浓度监测数据, 探讨大气环流条件与石家庄PM2.5污染的关系。在5类大气环流条件中, 第I类(NW型和N型, 天数占16%)的扩散条件最好, 以西风和西北风为主, 风向比较稳定, 风速大, 边界层高度高; 第II类(NE型, 天数占9%)和第III类(E型和SE型, 天数占12%)的扩散条件次好, 近地面风向分别以北风和东北风为主, 风速较大, 前者边界层高度中等, 后者边界层高度低; 第IV类(A型, 天数占37%)的扩散条件较差, 近地面风速较低, 同时边界层高度低; 第V类(UM型、C型、S型、SW型和W型, 天数占26%)的扩散条件最差, 近地面风速很小, 风向变化大, 边界层高度低, 低层大气逆温明显。不同大气环流条件下气团的传输路径存在差异, 对石家庄地区PM2.5污染产生潜在影响的区域随之不同。石家庄市秋冬季的PM2.5污染与不同环流型的扩散条件密切关联, 第V类大气环流条件下最易发生PM2.5污染, 污染发生频率在78%~96%之间, 重度及以上级别污染发生频率均在55%以上; 第IV类大气环流条件下的污染状况变化相对缓慢, 但连续的第IV类大气环流天气多带来PM2.5污染持续累积; 第I类大气环流条件下发生污染的频率最低。  相似文献   

11.
结合2013—2017年太原市13个点位的监测数据,对新标准监测以来太原市6项污染物的时间、空间分布特征进行统计分析。结果表明:SO2已经不再是太原市污染贡献前三位的主要污染物;大气污染特征已由原来的单纯煤烟型污染逐渐向机动车尾气复合型和光化学二次污染转化;细颗粒物成为全年首要污染物,臭氧污染在夏季凸显,成为夏季环境空气质量改善的难题;南部区域污染重于城市北部区。  相似文献   

12.
基于天津市宝坻区2016—2018年的气象观测资料,分析能见度与各项气象要素间的关系,结果表明,风速和能见度呈现正相关关系,当地面风速持续较小时,易导致能见度降低。结合风廓线雷达和大气成分资料,对一次重污染天气过程进行分析,发现风廓线雷达能实时反映高空风场的变化情况,进而判断污染物的扩散方向和传送途径,为短时环境监测预报提供依据;根据高空垂直速度的变化情况,判断本地是否存在上升气流,进而形成局地弱辐合区,使周边污染物聚集,出现污染天气。  相似文献   

13.
杨超  徐洁玲 《江西科学》2021,39(2):313-317
利用气象观测资料和环境监测数据,分析2018—2019年九江市大气污染物扩散气象条件,并对比分析周边南昌、景德镇大气污染物扩散条件,得出以下结论:九江、南昌、景德镇3地平均PM2.5浓度均呈现秋冬季高、春夏季低的特点;3地PM2.5浓度偏高时段主要在冬半年,九江明显更高;当冬季九江盛行偏北风和东北风时PM2.5浓度更高、污染更严重,2018—2019年九江逆温次数较南昌多,垂直扩散条件略差于南昌;受地形影响,冬半年常见的偏北风被大别山脉分流为西北风和东北风,九江位于两股气流的交汇处,九江南侧有山脉阻挡,不利于污染物向南扩散.  相似文献   

14.
为研究咸阳市城区大气污染气象条件特征,统计分析了2014—2018年咸阳市城区大气浓度监测数据,对其浓度变化特征进行分析,同时选取冬季污染较重和空气良好的两个时段,对其相应的天气形势、物理量场及污染气象参数进行分析.结果表明:咸阳市城区大气污染物主要是以PM_(2.5)和PM_(10)为主的颗粒物,其季节变化明显,尤其在每年11月至次年3月采暖季最严重,其逐时变化规律明显受到上下班高峰机动车尾气密集排放的影响;重污染期间对流层上层及地面冷空气明显偏弱,关中地区处于均压场控制,对流层低层垂直上升运动偏弱,湿层偏厚偏强;重污染期间混合层高度与颗粒污染物浓度呈明显的负相关,尤其在混合层出现低值次日极易出现重污染天气;静稳指数值与重污染天气呈正相关,重污染期间咸阳市多为静稳天气,颗粒污染物容易聚集导致浓度迅速升高.  相似文献   

15.
对太原市2017年12月10—15日一次空气重污染过程的天气形势、气象条件、外部输送等成因进行了初步分析。结果表明,气象因素是造成这次重污染的主要原因,偏南风的外部传输加重了此次污染。建议加强与气象部门的合作,在面临不利的气象条件时及时采取措施,并做好太原及周边地区的区域联防联控工作。  相似文献   

16.
利用广东省惠州市2013-2016年逐日和逐时的大气环境和气象观测资料,统计分析了惠州市夏秋季臭氧污染天气特征并分析了2013年7月12-13日臭氧污染过程。结果表明:(1)惠州市臭氧污染在一年四季均有出现,夏秋季(7-10月)年平均出现日数为12. 5d占年臭氧污染日的73. 5%,夏秋季臭氧污染日和臭氧中度污染日偏西风(WSW-W-WNW-NW)出现频率合计分别为44. 9%和74. 4%;气象条件分析表明惠州市夏秋季臭氧污染日大多出现在天气晴朗、日照充足、气温较高且为偏西风的天气下,夏秋季的天气气候特征使其成为臭氧污染的高发时段。(2)分析2013年7月12-13日惠州市臭氧中度污染过程发现,此次臭氧污染过程主要是受"苏力"外围下沉和偏西气流的共同影响,天气晴朗、日照充足、天气炎热非常有利于臭氧生成,地面和低空吹偏西风使惠州市处于珠三角城市群的下风向存在区域污染输送,同时垂直方向的下沉气流不利于污染物输送与扩散。  相似文献   

17.
淮河流域重点城市大气污染源区特征的印痕分析   总被引:2,自引:0,他引:2  
利用NCEP-fnl再分析气象资料和大气环境监测空气污染指数(API),运用印痕模型,对淮河流域重点城市(郑州、徐州和连云港)的大气污染物源区进行分析,内容包括2010年全年API指数大于300的重污染个例情况以及API大于100的所有污染个例的统计特征.研究结果表明:重污染的出现往往伴随印痕空间分布形态与方向的极大改变,污染发展加重阶段印痕影响区域长度收缩、侧向扩展,污染最重的阶段则对应印痕影响区域和方向的急剧变化,说明重污染过程与天气系统转换期的风速减小、风向改变有密切关系.统计表明:郑州市的潜在污染影响源区主要分布在偏西和西北方向,春季西北方向的影响最显著;徐州市的潜在污染影响源区主要为西南方向,秋季最显著;连云港的潜在污染源区主要为西南和偏西方向,西南方向的影响在秋季最显著.  相似文献   

18.
采用CALPUFF空气质量模型,对2006年太原市城区大气污染源排放SO2的传输及转化过程进行数值模拟.借助于地理信息系统软件和其它工具软件,结合实际监测结果详细分析了太原市城区范围内的SO2浓度分布特点及其对各关心点的浓度贡献.结果表明:太原市1、4两月大气污染物整体向东南方向扩散,7月由市中心向四周均匀扩散,10月向东北方向扩散;太原市7月份最不利于污染物扩散,其次为1月份;相比之下,4、10两月污染物扩散能力强.从空间分布来说,太原市SO2污染总体呈现东部重于西部,北部重于南部的态势;高值区主要分布在北部太钢工业区、西部煤化工工业区和东部工商混合区.太原市污染源排放对各关心点的SO2浓度贡献值呈现1、7月高,4、10月低的趋势,贡献值较大的关心点由高到低依次为涧河、坞城、桃园、尖草坪.  相似文献   

19.
利用上海徐家汇2014年9月~2015年2月风廓线雷达资料,分析了徐家汇上空水平风速与地面能见度的关系,结果表明,在800m~1600m高度上,水平风速小于10m/s,且持续时间长时,地面能见度下降,风速越小,能见度下降越明显;当水平风速小于5m/s时,则可能出现严重灰霾天气。结合风廓线资料,对一次灰霾天气进行分析,发现风廓线雷达探测风场具有实时性特点,能较快发现风向的变化,进而判断污染物的扩散方向和传送途径,能够对灰霾天气作出短时预报;在风廓线雷达垂直速度剖面图上,可以直观地看出某时刻400m~1600m存在上升气流,当大气的垂直上升运动明显时,会使近地面出现弱辐合区,形成小尺度局地环流,使污染物集聚,较易出现污染天气。  相似文献   

20.
利用单颗粒气溶胶质谱仪并综合地面空气污染监测数据、常规气象观测数据、卫星遥感火点监测资料和气流后向轨迹,分析了2016年石家庄市秋季出现的两次空气重污染过程的演变特征及主要影响因素。结果表明:机动车尾气和地面扬尘是PM2.5的重要来源。高低空稳定的天气形势配置是两次重污染过程形成的直接原因。在这些天气形势下,湿度高、风速小、气压低、逆温层厚、混合层高度低是造成两次重污染过程的重要原因。同时东南和西南方向周边污染物的输送对重污染天气的形成发展也有一定的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号