首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 47 毫秒
1.
为了解决低分辨率遥感图像超分辨重建的问题,本文提出了一种基于双重字典及联合特征的遥感图像超分辨率算法.超分辨率重建技术目的就是根据低分辨率图像重建出原始高分辨率图像的高频信息.本文将图像的高频信息分解成为主高频信息和残差高频信息两个部分,然后针对主高频信息和残差高频信息,分别训练主高频字典和残差高频字典,并结合稀疏表示方法对图像进行重构.同时,为了建立更能反映图像内部结构信息的字典,本文联合图像的不同的结构特征,建立统一的字典.本文算法对图像取得较好的复原效果,复原出的高分辨率图像更接近于真实图像,与其他方法相比具有更好的主观和客观质量.  相似文献   

2.
针对基于稀疏表示的人脸超分辨率算法存在的字典尺寸大、训练时间长等问题,提出一种基于位置字典对的超分辨率重建方法.由于同一位置的人脸图像块具有相似的结构和内容,更有可能用相同的字典原子进行线性组合表示,因此把训练人脸图像按位置分块,首先为每个位置训练一个位置字典对,利用获得的多个位置字典对,对低分辨率测试人脸图像进行基本重建,然后应用残差补偿方法对位置块进行补偿.实验结果表明,由所提方法重建的人脸图像具有更好的视觉效果,与应用原始图像块进行稀疏表示的图像超分辨率算法相比,平均图像结构相似度指标值提高了0.082,同时字典训练时间缩短了约5倍.  相似文献   

3.
针对低分辨率人脸序列的识别这一问题,提出了一种超分辨率重构识别算法.该算法利用低分辨率序列中所提供的关于同一人脸的不同信息,先重构出一幅具有更高分辨率的人脸图像,然后再进行基于Gabor特征的人脸识别.实验结果表明,该算法能够显著提高人脸识别率.  相似文献   

4.
稀疏表示模型是通过将字典中的原子进行组合得到期望的结果.为了解决传统字典学习中所有图像块重建均使用同一个字典,从而忽略了最佳稀疏域的问题,提出来一种基于多字典和稀疏噪声编码的图像超分辨率重建算法.在字典训练时,利用图像的特征将它们合理地划分成若干个簇,每个聚类训练生成子字典对,利用最佳字典对进行重建.在求解稀疏系数阶段,引入稀疏编码噪声去除噪声的影响,利用图像非局部自相似性来获得原始图像稀疏编码系数的良好估计,然后将观测图像的稀疏编码系数集中到这些估计当中.实验表明,与ASDS算法和SSIM算法相比较,该算法有更好的重建结果,获得了更丰富的图像细节和更清晰的边缘.  相似文献   

5.
提出了一种新的字典学习法用于图像的超分辨率复原,即双层混合字典。其中,第一层字典采用半耦合字典,确保了复原过程的灵活性和准确性,并结合稀疏表示算法得到第一层复原图像;为了不影响算法的整体运算速度,第二层字典采用分类字典,并利用原始图像与第一层复原图像的差值作为高分辨率样本,以便能恢复更多的高频细节。实验结果表明,本算法与传统的基于单一字典的图像超分辨率算法相比,无论是在视觉效果上,还是峰值信噪比(PSNR)指标,都取得了更为理想的效果,有效地改善了降质图像的质量。  相似文献   

6.
基于高分辨率图像与其对应的低分辨率图像在转换到特定空间后有高度关联性的假设,提出一种基于共享空间稀疏表示的单幅图像超分辨率方法.该算法应用典型相关分析建立图像块对之间的联系,稀疏正则项刻画理想图像在过完备字典下的稀疏表示.实验结果表明:文中方法改善了算法执行速度,消除了图像主要边缘处的模糊与伪影,增强了图像重建质量.  相似文献   

7.
为了提高图像超分辨率重建的效率与质量,考虑到高、低分辨率稀疏表示系数的不同,改进了锚定邻域回归算法,并结合半耦合字典学习算法提出了一种快速图像超分辨率重建算法.首先采用半耦合字典学习算法得到高分辨率字典、低分辨率字典及映射矩阵;再采用岭回归算法求解低分辨率稀疏表示系数,并根据高分辨率稀疏表示系数与低分辨率稀疏表示系数之间的映射关系,得到高分辨率稀疏表示系数;然后,根据输入图像块特征寻找字典中与其最相关的字典原子,计算该字典原子所对应的投影矩阵,进行超分辨率重建.仿真结果表明:提出的算法不仅在重建速度上表现更快,重建图像的质量也得到提高,在客观指标和主观效果上均取得更好的效果.  相似文献   

8.
大倍数超分辨率图像重构的通用快速算法   总被引:2,自引:0,他引:2  
为了解决超分辨率图像重构的计算复杂性随着放大倍数的加大而呈指数规律急剧上升这一问题,文中提出了一个通用的快速超高分辨率图像重构算法.该算法利用各低分辨率图像之间的位移关系将所有低分辨率图像进行分组,然后分别对每个组进行超分辨图像重构,并重复此分组重构过程直至获得预期的分辨率.实验结果表明,该快速算法能够在保持重构效果基本不变的同时,较大地降低超分辨率图像重构的计算复杂性。  相似文献   

9.
在分析人脸超分辨率算法和二维稀疏表示的基础上,提出基于二维稀疏表示的人脸超分辨率重构算法。与一维稀疏表示中将图像块转换为列向量不同,本文考虑到二维图像列与列之间的近邻关系,对图像块进行二维稀疏表示;在字典训练中,对每组图像块的每一列训练高、低分辨率字典,提出二维K-SVD算法对字典进行训练,减少字典训练消耗的时间,同时能够改善超分辨率人脸的质量。采用中科院CAS-PEAL共享人脸图像数据库进行仿真实验,实验结果从主、客观质量均验证了本文算法的有效性及先进性。  相似文献   

10.
超分辨率重构图像的噪声分析与消除   总被引:1,自引:0,他引:1  
张地  彭宏 《韶关学院学报》2006,27(12):31-34
在超分辨率重构图像中,可以观察到四种不同的重构噪声,分别是边缘振荡效应、梳毛效应、边缘锯齿效应和方块效应.本文提出了一种能同时有效地滤除这四种重构噪声的边界自适应滤波算法.实验结果表明,该算法能在保持图像细节信息的同时较好地滤除各种重构噪声.  相似文献   

11.
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升.现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特征来提高图像的表达能力.为了解决超分辨率重建中存在的问题,提出了一种新的超分辨重建方法称为分型残差网络...  相似文献   

12.
针对光学图像,从光学系统成像机理出发,建立了一种图像退化的分层模型,指出了造成图像分辨率降低的若干关键因素(衍射效应、欠采样等).提出了一种用于超分辨率复原的分离方法,并引入了级联模板算法。该方法降低了计算的复杂度,实验结果表明了算法的有效性。  相似文献   

13.
卷积神经网络由于其强大的非线性表达能力在自然图像的处理问题中已经获得了非常大的成功。传统的稀疏表示方法利用精确配准的高分辨率多光谱图像,从而限制了实际应用。针对传统方法的不足,本文提出了一种基于深度残差卷积神经网络的单高光谱图像超分辨率方法,无需对应的多光谱图像。我们构建深度残差卷积神经网络挖掘低分辨率遥感图像和高分辨率遥感图像之间的非线性关系。构建的深度学习网络串联多个残差块,并去除一些不必要的模块,如批标准化层,每个残差块只包含两个卷积层,这样在保证模型效果的同时又加快模型的效率。此外,因为遥感图像训练数据缺乏,我们充分挖掘自然图像和高光谱图像之间的相似性,利用自然图像样本训练卷积神经网络,进一步利用迁移学习将训练好的网络模型引入到高分辨率遥感图像超分辨问题上,解决了训练样本缺乏问题。最后,基于实际的遥感数据超分辨实验结果表明,本文所提出的方法具有良好的性能,能得到较好的超分辨效果。  相似文献   

14.
SRGAN是一种基于生成对抗网络的超分辨重建方法,其生成的高分辨率图像质量较传统方法有着明显提升,然而SRGAN存在着训练过程不稳定,图像浅层特征未充分使用等问题,很大程度上影响到了生成图像的质量。本文提出了一种特征增强改进的SRGAN模型,该模型使用信息蒸馏块进行特征纹理信息的增强,并消除图像特征中的冗余信息。此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证了GAN网络训练的稳定性。本文基于4倍放大因子的超分辨重建任务,在BSD100数据集上进行实验结果的质化评价和量化评价。实验表明,本文方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果。  相似文献   

15.
Image super-resolution(SR) is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this work,a brief survey on recent advances of deep learning based single image super-resolution methods is systematically described.The existing studies of SR techniques are roughly grouped into ten major categories.Besides,some other important issues are also introduced,such as publicly available benchmark datasets and performance evaluation metrics.Finally,this survey is concluded by highlighting four future trends.  相似文献   

16.
为了从一幅包含文字、公式和图形等内容的低分辨率文本图像重建高分辨率图像,提出了一种获取重建图像先验知识的新方法.利用实例图像和图像降质模型建立图像库,图像重建时,将低分辨率观测图像分成若干子块,每个子块分别从图像库中找到一块最佳匹配的高分辨率实例图像块,将这些实例图像块依次拼成一幅大图,并把该大图各点的灰度值作为重建图像各点灰度值的均值,以此先验知识采用最大后验概率(MAP)准则估计出高分辨率文本图像.实验结果表明本文的方法能够取得较好的重建效果.  相似文献   

17.
为了更好地保持重建彩色图像各通道信息的相关性,有效提高彩色重建图像边缘、色彩等细节信息的恢复质量,提出一种基于四元稀疏正则模型的彩色图像超分辨率重建算法.该算法利用四元数表示彩色图像的三个通道信息,并且采用L1/2正则项代替L1正则项构建基于四元稀疏正则约束的彩色图像超分辨率字典学习及模型重建.同时在训练重建字典对中,为了更好地表征图像特征信息,采用去均值方法构造高低分辨率训练样本集;为了得到与低分辨率重建字典更匹配的高分辨率重建字典,采用字典分离训练方法分别生成高低分辨率重建字典.实验结果表明:与现有的算法相比较,本文算法在重建图像的主观和客观评价指标方面均有改善.  相似文献   

18.
人脸图像超分辨率技术,又名人脸幻觉,可根据给定的低分辨率人脸图像中恢复出对应的高分辨率人脸图像.该技术无论是在学术界还是在工业界都具有非常广泛的应用前景.人脸,作为一种具有高度结构先验的对象,其结构先验可以为网络提供结构信息,从而辅助人脸图像超分辨率任务的执行,改善人脸图像超分辨率性能.因而许多基于结构先验的人脸图像超分辨率方法被提出.为了了解和掌握基于结构先验的人脸图像超分辨率技术的发展状况,本文对其进行了系统的总结与归类,主要从先先验、并行先验、中间先验和后先验,四个方面对基于结构先验的人脸图像超分辨率技术进行概述.最后分析基于结构先验的人脸图像超分辨率技术存在的问题与挑战.  相似文献   

19.
深度学习在一定程度上解决了从低分辨率图像中恢复出高分辨率图像这一图像超分辨率问题。目前基于生成对抗网络(generative adversarial network,GAN)的方法可以从超分辨率数据集中学习低/高分辨率图像映射关系,从而生成具有真实纹理细节的超分辨率图像。然而,基于GAN的图像超分辨率模型训练通常不稳定,其结果往往带有纹理扭曲和噪声等问题,提出了采用掩膜(mask)模块以辅助对抗网络训练。在网络训练过程中,掩膜模块根据生成网络输出的超分辨率结果和原始高分辨率图像,计算得到相应观感质量信息,并进一步辅助对抗网络训练。在实验中对3个最近提出的基于GAN的图像超分辨率模型进行修改,引入掩膜模块,修改后的模型在超分辨率图像输出的观感和真实感量化指标上均有明显地提升。掩膜模块的优点是可以进一步提升基于GAN的图像超分辨率网络输出的超分辨率图像观感质量,并仅需对生成对抗网络训练框架进行修改,因此适用于多数基于GAN的图像超分辨率模型的进一步优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号