共查询到20条相似文献,搜索用时 78 毫秒
1.
作者简介:王亚昆 《西安交通大学学报》2019,(1)
针对吸收式制冷机组非线性、难以控制的特点,提出了一种基于逆神经网络模型的设定点优化方案。首先,以11.5kW单效溴化锂吸收式制冷机组为对象,使用人工神经网络方法建立了机组模型,通过对溴冷机制冷原理的分析,建立了系统结构为5-6-2的网络模型,该神经网络模型的相关系数大于0.99且方均根误差小于0.2%,与实验数据取得了良好的拟合效果;然后,利用该模型对溴冷机的各个输入参数进行灵敏度分析,并据此选择热水供水温度与冷却水流量作为优化方法的控制输入参数;最后,以冷冻水输出温度作为系统控制输出,对其进行优化计算,并采用改进的粒子群优化算法与逆神经网络相结合的方法,计算制冷机组的最优控制输入参数。通过实验与仿真分析,可知该算法的计算时间在30 s以内,低于吸收式制冷机组的稳定时间;溴冷机的目标输出与仿真计算结果间的误差小于0.02%,表明该方案可以应用于吸收式制冷机组的在线控制。 相似文献
2.
《西安交通大学学报》2021,(1)
针对吸收式制冷机组非线性、难以控制的特点,提出了一种基于逆神经网络模型的设定点优化方案。首先,以11.5kW单效溴化锂吸收式制冷机组为对象,使用人工神经网络方法建立了机组模型,通过对溴冷机制冷原理的分析,建立了系统结构为5-6-2的网络模型,该神经网络模型的相关系数大于0.99且方均根误差小于0.2%,与实验数据取得了良好的拟合效果;然后,利用该模型对溴冷机的各个输入参数进行灵敏度分析,并据此选择热水供水温度与冷却水流量作为优化方法的控制输入参数;最后,以冷冻水输出温度作为系统控制输出,对其进行优化计算,并采用改进的粒子群优化算法与逆神经网络相结合的方法,计算制冷机组的最优控制输入参数。通过实验与仿真分析,可知该算法的计算时间在30 s以内,低于吸收式制冷机组的稳定时间;溴冷机的目标输出与仿真计算结果间的误差小于0.02%,表明该方案可以应用于吸收式制冷机组的在线控制。 相似文献
3.
《西安交通大学学报》2020,(1)
针对吸收式制冷机组非线性、难以控制的特点,提出了一种基于逆神经网络模型的设定点优化方案。首先,以11.5kW单效溴化锂吸收式制冷机组为对象,使用人工神经网络方法建立了机组模型,通过对溴冷机制冷原理的分析,建立了系统结构为5-6-2的网络模型,该神经网络模型的相关系数大于0.99且方均根误差小于0.2%,与实验数据取得了良好的拟合效果;然后,利用该模型对溴冷机的各个输入参数进行灵敏度分析,并据此选择热水供水温度与冷却水流量作为优化方法的控制输入参数;最后,以冷冻水输出温度作为系统控制输出,对其进行优化计算,并采用改进的粒子群优化算法与逆神经网络相结合的方法,计算制冷机组的最优控制输入参数。通过实验与仿真分析,可知该算法的计算时间在30 s以内,低于吸收式制冷机组的稳定时间;溴冷机的目标输出与仿真计算结果间的误差小于0.02%,表明该方案可以应用于吸收式制冷机组的在线控制。 相似文献
4.
结合实际的测试数据,利用神经网络反向传播网络BP算法,辨识出机组的系统模型,对机组的运行特性进行分析,并采用同样的方法对机组的运行费用进行建模和优化.研究结果表明,采用人工神经网络能很好地解决溴化锂机组的建模问题,并可根据模型对机组的运行特性进行分析. 相似文献
5.
溴化锂溶液结晶是溴化锂制冷机常见的故障之一,针对严重的结晶故障通常采用的方法是使用蒸汽加热结晶部位,但蒸汽取用比较困难,另外使用不够安全,并且熔晶时间较长。本文介绍了一种比较实用的溶晶方法,处理效果较好,且比较安全,但必须注意防止腐蚀问题。 相似文献
6.
新型溴化锂增压吸收式制冷循环 总被引:6,自引:0,他引:6
针对传统吸收式制冷机不宜应用于驱动热源温度有波动或无高品位热源可供利用的场合的问题,提出了一种以少量电能补偿热能品位的新型循环-增压吸收式循环,增强吸收式循环克服了传统循环的缺点,补偿相当于制冷量2%-10%的电能可以使驱动热源温度降低约5-20℃,而且新循环与传统循环的制冷系数基本相当。 相似文献
7.
吸收式制冷机传热面积的优化分析 总被引:1,自引:0,他引:1
研究热阴影响下吸收式制冷机传热面积的优化问题,导出制冷机的最佳制冷系数与制冷率和传热面积间的关系,以及里佳传热面积比,并应用这些结果对吸收式制冷机的一些优化性能作了讨论。 相似文献
8.
文章把模拟退火思想引入到粒子群优化算法中,提出一种关于神经网络结构的优化设计方法,用于同时完成对网络结构空间和权值空间的搜索。算法对神经网络的结构和权值进行了优化,删除了网络中的冗余结点和权值,提高了网络的处理能力。实验结果表明,算法能够有效抑制粒子群优化算法不成熟收敛的发生,有效提高前馈神经网络的收敛精度和收敛速度,表现出良好的性能。 相似文献
9.
神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP或其它梯度算法,导致训练时间较长且易陷入局部极小点,本文探讨用粒子群优化算法训练神经网络,并应用到钻削加工参数优化中,试验表明粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。 相似文献
10.
研究了基于粒子群算法的BP神经网络优化问题,将改进的粒子群优化算法用于BP神经网络的学习训练,并与传统的BP网络进行了比较.结果表明,将改进粒子群优化算法用于BP神经网络优化,不仅能更快地收敛于最优解,而且很大程度地提高了结果的精度. 相似文献
11.
基于人工神经网络降维映射的统计优化方法 总被引:4,自引:0,他引:4
提出将多维空间的样本数据降维映射到二维平面上,并在该平面上自动生成函数的等值分布曲线,从而,可直观出该函数的最优点或最优区域,通过本文提出的逆映射算法可将其还原到多维空间用原始变量表示.运算实例结果表明,基于神经网络降维映射的优化方法,直观、准确、可靠,对于有约束优化问题的求解特别有效. 相似文献
12.
反问题与神经网络相结合的混流泵叶片优化设计 总被引:12,自引:1,他引:12
针对三元扭曲叶片优化设计过程中设计变量较多的问题,采用动量矩为设计变量,再通过反问题计算得到叶片来间接对叶片进行参数化;针对评价函数计算量太大的问题,根据试验设计理论安排训练样本,采用神经网络建立设计变量与目标函数间的复杂的响应关系,并且详细研究了反向传播和径向基函数2种网络在对评价函数进行预测过程中的应用,建立了一种新的叶片优化设计方法,与传统的优化方法相比,其设计变量数目较少,以叶轮内的三维粘性流动分析为基础且大大缩短了计算时间,利用此方法对一台混流泵的扬程和效率进行优化,所得叶片性能良好,从而验证了此方法的有效性。 相似文献
13.
基于粗糙集和BP神经网络的空气质量评价方法 总被引:1,自引:1,他引:1
基于粗糙集理论,提出了空气质量评价参数的选取算法,在不降低有效分类信息的前提下对监测数据经过约简并作为BP神经网络的输入数据,简化了网络结构,提高了训练速度和测试精度.基于BP神经网络的空气质量评价方法能有效融合多种监测数据,系统通用性强.实验表明,基于粗糙集和BP神经网络的空气质量评价方法是可行有效的. 相似文献
14.
提出了基于粗糙集和神经网络的故障诊断方法。采用Kohonen网络对连续属性值进行离散化,应用粗糙集理论对特征参数进行属性约简,并把约简结果生成规则作为BP网络的输入。仿真结果表明,经粗糙集理论优化后的样本集进行神经网络训练,提高了神经网络的学习速度和故障诊断正确率,减少了训练时间。 相似文献
15.
王启志 《华侨大学学报(自然科学版)》2005,26(4):397-400
逆模型控制是一个新颖的控制方法.但在实现上会遇到很多困难,如被控对象的大滞后、时变性和不确定性等,使精确的对象数学模型难以建立.文中根据工业对象的特点及对控制系统高鲁棒性与高自适应性的要求,提出一种改进的神经网络的模型参考自适应逆控制系统.仿真试验表明,此系统具有良好的跟踪给定信号和消除对象干扰的作用. 相似文献
16.
针对牲畜面部识别在养殖行业广泛需求的问题, 提出一种基于卷积神经网络的猪脸特征点检测方法, 解决了猪脸特征点难检测的问题. 首先, 采集猪面部数据并进行特征点标注, 使用新的采集方法以解决猪口部通常不可见的问题; 其次, 对猪脸数据和人脸数据进行结构计算, 匹配相似度较高的猪脸和人脸, 构建猪脸人脸匹配数据集; 再次, 利用匹配数据集训练TPS(thin plate spline)形变卷积神经网络, 得到形变后的猪脸数据集以适配人脸特征点检测模型; 最后, 使用形变猪脸数据集对人脸特征点检测神经网络模型进行微调, 得到猪脸特征点检测模型. 实验结果表明, 用该方法进行猪脸特征点检测, 错误率仅为5.60%. 相似文献
17.
莫礼平 《成都大学学报(自然科学版)》2007,26(1):47-51
针对传统故障诊断技术的不足,提出一种基于Kohonen神经网络的故障诊断方法,其使用一种由邻域函数决定权重调整程度的改进SOM算法进行学习,避免基本SOM算法中调整权重前的邻域判断过程,有利于提高网络的学习速度和自适应性.以齿轮故障诊断为例进行Matlab仿真实验,实验结果表明该方法不但可行,而且诊断速度快、准确率高. 相似文献
18.
莫礼平 《吉首大学学报(自然科学版)》2007,28(2):41-43
为了克服单一Kohonen网络和BP网络用于数据挖掘的缺点,提出了一种基于Kohonen和BP组合神经网络的数据分类方法,并给出了该分类方法的基本思想和算法描述.电力变压器故障诊断的仿真实验结果表明,利用该分类方法可以提高数据分类的精确性. 相似文献
19.
针对汽车纵横向运动中的耦合现象,以四轮驱动、前轮转向的智能汽车为研究对象,建立汽车纵横向动力学模型并通过Interactor算法对模型的可逆性进行分析.在已有的传统伪线性系统结构的基础上,根据智能汽车的特点,建立了可对接智能汽车上层规划模块的伪线性系统.为了实现汽车纵横向运动之间的解耦,采用基于神经网络逆系统的解耦控制策略,构造神经网络并对其进行训练,并将神经网络逆系统与内模控制器组成闭环控制回路,对纵向速度和横摆角速度进行内模反馈调节,进一步提升控制系统的性能.仿真结果表明,所设计的基于神经网络逆系统的控制方法能实现良好的解耦特性,且相比于其他的控制方法,在各种输入条件下,都能实现对于期望速度和期望横摆角速度良好的跟踪性能,同时,质心侧偏角始终被控制在一个较小的范围内,这有利于智能汽车路径跟踪的精确性和行驶稳定性. 相似文献